简介概要

The Pattern Growth of Carbon Nanotubes by Self-assembled Monolayers Techniques

来源期刊:材料导报2004年第8期

论文作者:KUO Deshan KUO Chengtzu CHEN Polin

关键词:carbon nanotubes; self-assembled monolayers (SAMs); selective deposition; chemical vapor deposition;

摘    要:The well controllable selective growth of carbon nanotubes (CNTs)on the desired area is an important issue for their future applications. In this study, a novel method for selective growth of CNTs was proposed by using the technology of self-assembly monolayers (SAMs) and the Fe-assisted CNTs growth. The Si wafers with the a : Si/Si3N4 layer patterns were first prepared by low pressure chemical vapor deposition (LPCVD)and lithography techniques to act as the substrates for selective deposition of SAMs. The selectivity of SAMs from APTMS solution (N-(2-aminoethyl)-3-aminopropyltrimethoxsilane) is based on its greater reactivity of head group on a-Si than Si3N4 films. The areas of pattern with SAMs will first chelate the Fe3+ ions by their diamine-terminated group. The Fe3+ ions were then consolidated to become Fe-hydroxides in sodium boron hydride solution to form the Fe-hydroxides pattern. Finally, the Fe-hydroxides pattern was pretreated in H plasma to become a well-distributed Fe nano-particles on the surface, and followed by CNTs deposition using Fe as catalyst in a microwave plasma-chemical vapor deposition (MP-CVD) system to become the CNTs pattern. The products in each processing step, including microstructures and lattice images of CNTs, were characterized by contact angle measurements, scanning electron microscopy (SEM), XPS, Auger spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM)deposition. The results show that the main process parameters include the surface activation process and its atmosphere, consolidation time and temperature, H plasma pretreatment. The function of each processing step will be discussed.

详情信息展示

The Pattern Growth of Carbon Nanotubes by Self-assembled Monolayers Techniques

KUO Deshan1,KUO Chengtzu1,CHEN Polin1

(1.Department of Materials Science and Engineering Chiao Tung University,Hisnchu,Taiwan,China)

摘要:The well controllable selective growth of carbon nanotubes (CNTs)on the desired area is an important issue for their future applications. In this study, a novel method for selective growth of CNTs was proposed by using the technology of self-assembly monolayers (SAMs) and the Fe-assisted CNTs growth. The Si wafers with the a : Si/Si3N4 layer patterns were first prepared by low pressure chemical vapor deposition (LPCVD)and lithography techniques to act as the substrates for selective deposition of SAMs. The selectivity of SAMs from APTMS solution (N-(2-aminoethyl)-3-aminopropyltrimethoxsilane) is based on its greater reactivity of head group on a-Si than Si3N4 films. The areas of pattern with SAMs will first chelate the Fe3+ ions by their diamine-terminated group. The Fe3+ ions were then consolidated to become Fe-hydroxides in sodium boron hydride solution to form the Fe-hydroxides pattern. Finally, the Fe-hydroxides pattern was pretreated in H plasma to become a well-distributed Fe nano-particles on the surface, and followed by CNTs deposition using Fe as catalyst in a microwave plasma-chemical vapor deposition (MP-CVD) system to become the CNTs pattern. The products in each processing step, including microstructures and lattice images of CNTs, were characterized by contact angle measurements, scanning electron microscopy (SEM), XPS, Auger spectroscopy, transmission electron microscopy (TEM) and high resolution TEM (HRTEM)deposition. The results show that the main process parameters include the surface activation process and its atmosphere, consolidation time and temperature, H plasma pretreatment. The function of each processing step will be discussed.

关键词:carbon nanotubes; self-assembled monolayers (SAMs); selective deposition; chemical vapor deposition;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号