简介概要

Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials

来源期刊:International Journal of Minerals Metallurgy and Materials2017年第1期

论文作者:Tao Peng Qing-zhi Yan Yan Zhang Xiao-jiao Shi Ming-yang Ba

文章页码:115 - 121

摘    要:Three reaction systems of MoS2–Fe, FeS –Fe, and Fe S–Fe–Mo were designed to investigate the use of FeS as an alternative to MoS2 for producing Fe-based friction materials. Samples were prepared by powder metallurgy, and their phase compositions, microstructures, mechanical properties, and friction performance were characterized. The results showed that MoS2 reacts with the matrix to produce iron-sulfides and Mo when sintered at 1050°C. Iron-sulfides produced in the MoS2–Fe system were distributed uniformly and continuously in the matrix, leading to optimal mechanical properties and the lowest coefficient of friction among the systems studied. The lubricity observed was hypothesized to originate from the iron-sulfides produced. The Fe S–Fe–Mo system showed a phase composition, porosity, and density similar to those of the MoS2–Fe system, but an uneven distribution of iron-sulfides and Mo in this system resulted in less-optimal mechanical properties. Finally, the Fe S–Fe system showed the poorest mechanical properties among the systems studied because of the lack of Mo reinforcement. In friction tests, the formation of a sulfide layer contributed to a decrease in coefficient of friction(COF) in all of the samples.

详情信息展示

Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials

Tao Peng,Qing-zhi Yan,Yan Zhang,Xiao-jiao Shi,Ming-yang Ba

Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing

摘 要:Three reaction systems of MoS2–Fe, FeS –Fe, and Fe S–Fe–Mo were designed to investigate the use of FeS as an alternative to MoS2 for producing Fe-based friction materials. Samples were prepared by powder metallurgy, and their phase compositions, microstructures, mechanical properties, and friction performance were characterized. The results showed that MoS2 reacts with the matrix to produce iron-sulfides and Mo when sintered at 1050°C. Iron-sulfides produced in the MoS2–Fe system were distributed uniformly and continuously in the matrix, leading to optimal mechanical properties and the lowest coefficient of friction among the systems studied. The lubricity observed was hypothesized to originate from the iron-sulfides produced. The Fe S–Fe–Mo system showed a phase composition, porosity, and density similar to those of the MoS2–Fe system, but an uneven distribution of iron-sulfides and Mo in this system resulted in less-optimal mechanical properties. Finally, the Fe S–Fe system showed the poorest mechanical properties among the systems studied because of the lack of Mo reinforcement. In friction tests, the formation of a sulfide layer contributed to a decrease in coefficient of friction(COF) in all of the samples.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号