简介概要

Biosorption potential of cerium ions using Spirulina biomass

来源期刊:JOURNAL OF RARE EARTHS2016年第6期

论文作者:David Sadovsky Asher Brenner

文章页码:644 - 652

摘    要:Two types of cyanobacteria of the genus Arthrospira(commonly known as Spirulina) were tested for biosorption of cerium(III) ions from aqueous solutions. An endemic type(ES) found in the northern Negev desert, Israel, and a commercial powder(CS) were used in this study. Biosorption was evaluated as a function of p H, contact time, initial metal concentration, number of sorption-desorption cycles, and salt concentration. The optimum p H range for biosorption was found to be 5.0–5.5. The kinetic characteristics of both Spirulina types were found to be highly compatible with a pseudo-second order kinetic model. The adsorption isotherms of both types were found to be well-suited to Langmuir and Freundlich adsorption isotherms. Maximum biosorption uptakes, according to the Langmuir model, were 18.1 and 38.2 mg/g, for ES and CS, respectively. Sodium chloride concentrations of up to 5 g/L had a minor effect on cerium biosorption. Desorption efficiency was found to be greater than 97% with 0.1 mol/L HNO3 after three sorption-desorption cycles, without significant loss in the biosorption capacity. The results indicated the feasibility of cerium recovery from industrial wastes using Spirulina biomass.

详情信息展示

Biosorption potential of cerium ions using Spirulina biomass

David Sadovsky1,2,Asher Brenner1

1. Unit of Environmental Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev

摘 要:Two types of cyanobacteria of the genus Arthrospira(commonly known as Spirulina) were tested for biosorption of cerium(III) ions from aqueous solutions. An endemic type(ES) found in the northern Negev desert, Israel, and a commercial powder(CS) were used in this study. Biosorption was evaluated as a function of p H, contact time, initial metal concentration, number of sorption-desorption cycles, and salt concentration. The optimum p H range for biosorption was found to be 5.0–5.5. The kinetic characteristics of both Spirulina types were found to be highly compatible with a pseudo-second order kinetic model. The adsorption isotherms of both types were found to be well-suited to Langmuir and Freundlich adsorption isotherms. Maximum biosorption uptakes, according to the Langmuir model, were 18.1 and 38.2 mg/g, for ES and CS, respectively. Sodium chloride concentrations of up to 5 g/L had a minor effect on cerium biosorption. Desorption efficiency was found to be greater than 97% with 0.1 mol/L HNO3 after three sorption-desorption cycles, without significant loss in the biosorption capacity. The results indicated the feasibility of cerium recovery from industrial wastes using Spirulina biomass.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号