简介概要

Catalytic combustion study of soot on Ce0.7Zr0.3O2 solid solution

来源期刊:JOURNAL OF RARE EARTHS2008年第2期

论文作者:FANG Ping XIAO Xiaoyan LUO Mengfei LU Jiqing

Key words:Ce0.7Zr0.3O2; reoxidizing-reducing; soot combustion; catalytic activity; rare earths;

Abstract: The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr4+ had replaced part of Ce4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main H2 consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 oC, which was 200 oC lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x, meanwhile, after oxygenation, the Ce0.7Zr0.3O2-x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.

详情信息展示

Catalytic combustion study of soot on Ce0.7Zr0.3O2 solid solution

FANG Ping1,XIAO Xiaoyan1,LUO Mengfei1,LU Jiqing1

(1.Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China)

Abstract:The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr4+ had replaced part of Ce4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main H2 consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 oC, which was 200 oC lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x, meanwhile, after oxygenation, the Ce0.7Zr0.3O2-x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.

Key words:Ce0.7Zr0.3O2; reoxidizing-reducing; soot combustion; catalytic activity; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号