结合环的约当微商
来源期刊:中南大学学报(自然科学版)1991年第6期
论文作者:殷志云
文章页码:98 - 101
关键词:约当微商; 正则元; T理想
Key words:Jordan derivation; regular element; T ideal
摘 要:设R是一个结合环,满足由2x=0,x∈R,可推出x=0,N是R的一个非零理,D1,D2是R的二个约当微商,使D1(N)和D2(N)分别含有R的一个交换子正则元,且对任意a,b∈N,都有D1(a)D2(b)=D2(b)D1(a),则R是交换环。
Abstract: In this paper the following results are proved: 1. Let R be an associative ring in which 2x=0 implies x=0, and N bean (nonzero) ideal of R and D1, D2 be two Jordan derivations on R, such thatD1(N) and D2(N) contain a regular element of R respectively. If R satisfies D1 (α)D2 (b)=D2 (b)D1 (α)for all α, b∈N, then R is commutative. 2. Let R be an associative ring and D be a nonzero mapping of R suchthat D (α+b) =D (α)+ D (b) and D (αb) = D (b)α+ bD (α)If any T ideal(≠0) of R contains a regular element in R, the R is commu-tative.