简介概要

Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第16期

论文作者:Yi Zhang Lili Tan Qingchuan Wang Ming Gao Iniobong P.Etim Ke Yang

文章页码:102 - 110

摘    要:Torsional properties are important performance parameters for bone screw applications, but they are seldom studied, especially for newly developed biodegradable Mg alloys. In this study, WE43 Mg alloy with different microstructures was achieved by equal channel angular pressing(ECAP) and heat treatment,and their torsional properties were studied. In addition, tensile properties were also tested as a comparison. The results indicated that grain refinement led to higher torsional strength and ductility, while the second phases improved the torsional strength but reduced the ductility. The texture was strengthened after ECAP, as a result the tensile strength increased, but the torsional strength did not increase and even decreased, especially for 2-pass ECAP sample with a typical basal fiber texture. The basal plane orientation deviation from the extrusion direction after 4-pass ECAP resulted in higher torsional strength and lower torsional ductility, but lower tensile strength and higher tensile ductility were obtained. This implied that a strong fiber texture would reduce the torsional strength but improve the torsional ductility, which was different from its effect on tensile properties.

详情信息展示

Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy

Yi Zhang1,2,Lili Tan1,Qingchuan Wang1,Ming Gao1,2,Iniobong P.Etim1,2,Ke Yang1

1. Institute of Metal Research, Chinese Academy of Sciences2. School of Materials Science and Engineering, University of Science and Technology of China

摘 要:Torsional properties are important performance parameters for bone screw applications, but they are seldom studied, especially for newly developed biodegradable Mg alloys. In this study, WE43 Mg alloy with different microstructures was achieved by equal channel angular pressing(ECAP) and heat treatment,and their torsional properties were studied. In addition, tensile properties were also tested as a comparison. The results indicated that grain refinement led to higher torsional strength and ductility, while the second phases improved the torsional strength but reduced the ductility. The texture was strengthened after ECAP, as a result the tensile strength increased, but the torsional strength did not increase and even decreased, especially for 2-pass ECAP sample with a typical basal fiber texture. The basal plane orientation deviation from the extrusion direction after 4-pass ECAP resulted in higher torsional strength and lower torsional ductility, but lower tensile strength and higher tensile ductility were obtained. This implied that a strong fiber texture would reduce the torsional strength but improve the torsional ductility, which was different from its effect on tensile properties.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号