MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Numerical simulation and optimization of red mud separation thickener with self-dilute feed

ZHOU Tian(周天)1, 2, LI Mao(李茂)1, 2, 3, ZHOU Chenn-qian(周谦)1, 2, 3, ZHOU Jie-min(周孑民)1,

(1. School of Energy Science and Engineering, Central South University, Changsha 410083, China;
2. Hunan Key Laboratory of Energy Conservation in Process Industry, Changsha 410083, China;
3. Department of Mechanical Engineering, Purdue University Calumet, Hammond 46323-2094, United States)

Abstract:In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener, computational fluid dynamics (CFD), custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system. The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field. Optimization experiments on feed well and self-dilute system were also carried out, and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates’ formation and improve the red mud settling speed. Furthermore, the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.

Key words:separation thickener; self-dilute feed system; numerical simulation; optimization experiments; computational fluid dynamics

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号