简介概要

Effect of trivalent rare earth ions doping on the fluorescence properties of electron trapping materials SrS:Eu2+

来源期刊:JOURNAL OF RARE EARTHS2011年第2期

论文作者:孙家跃 刘振兴 杜海燕

文章页码:101 - 104

摘    要:Trivalent rare-earth ions (La3+,Pr3+,Nd3+,Sm3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,and Yb3+) were investigated as the codoped auxiliary sensitizer for the electron trapping materials SrS:Eu2+ in order to enhance the fluorescence properties.It was found that Sm3+ and Tb3+ had the best photoluminescence stimulated luminescence (PSL) effect among the selected trivalent rare-earth ions.All the SrS:Eu2+ samples doped by different trivalent rare-earth ions could be stimulated by 980 nm laser after being exposed to the conventional sunlight,and they emitted PSL with the peak located at 615 nm.The result also indicated that some co-doped rare earth ions could increase fluorescence intensities of the traditional electron trapping materials SrS:Eu2+.

详情信息展示

Effect of trivalent rare earth ions doping on the fluorescence properties of electron trapping materials SrS:Eu2+

孙家跃,刘振兴,杜海燕

College of Chemistry and Environmental Engineering,Beijing Technology and Business University

摘 要:Trivalent rare-earth ions (La3+,Pr3+,Nd3+,Sm3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,and Yb3+) were investigated as the codoped auxiliary sensitizer for the electron trapping materials SrS:Eu2+ in order to enhance the fluorescence properties.It was found that Sm3+ and Tb3+ had the best photoluminescence stimulated luminescence (PSL) effect among the selected trivalent rare-earth ions.All the SrS:Eu2+ samples doped by different trivalent rare-earth ions could be stimulated by 980 nm laser after being exposed to the conventional sunlight,and they emitted PSL with the peak located at 615 nm.The result also indicated that some co-doped rare earth ions could increase fluorescence intensities of the traditional electron trapping materials SrS:Eu2+.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号