Strength and energy exchange of deep sandstone under high hydraulic conditions

来源期刊:中南大学学报(英文版)2020年第10期

论文作者:由爽 李飞 纪洪广 ELMO Davide 王洪涛

文章页码:3053 - 3062

Key words:deep sandstone; high hydraulic pressure; mechanical characteristics; energy storage; rock burst proneness

Abstract: To investigate the influence of confining pressure and pore water pressure on strength characteristics, energy storage state and energy release intensity at peak failure of deep sandstone, a series of triaxial compression tests under hydraulic coupling conditions are carried out. By analyzing the process of rock deformation and failure, the stress thresholds of the rock are obtained. The change trend of total energy density, elastic energy density and dissipated energy density of deep sandstone in the pre-peak stage is obtained by the graphical integration method. By comparing the dynamic energy storage level of rocks under different confining pressures, the influence of pore water pressure on the energy dissipation at stress thresholds of crack closure stress, crack initiation stress, crack damage stress and peak stress is analyzed. Based on the ratio of pre-peak total energy density to post-peak total energy density, the interaction mechanism of confining pressure and pore water pressure for the rock burst proneness of deep sandstone is studied. The experimental results show that the peak stress of sandstone increases with the increase of confining pressure, while the existence of pore water pressure can weaken the peak stress of sandstone. In the stress stage from crack closure stress to peak stress, the dynamic energy storage level of rock presents a trend of the inverse “check mark”. Meanwhile, the larger the confining pressure, the higher the energy storage level of rock. However, the pore water pressure increases the degree of energy dissipation of rock and reduces the energy storage capacity of rock, and the degree of dissipation is linear with pore water pressure. The increase of confining pressure aggravates the instability and failure of deep sandstone, while pore water pressure has the opposite effect. The research results will provide necessary data support for the stability analysis of rock mass excavation in sandstone stratum under high stress and high pore water pressure.

Cite this article as: LI Fei, YOU Shuang, JI Hong-guang, ELMO Davide, WANG Hong-tao. Strength and energy exchange of deep sandstone under high hydraulic conditions [J]. Journal of Central South University, 2020, 27(10): 3053-3062. DOI: https://doi.org/10.1007/s11771-020-4528-2.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号