用于研究纤维尾砂胶结充填材料单轴压缩性能的新型人工智能模型

来源期刊:中国有色金属学报(英文版)2021年第4期

论文作者:喻智 史秀志 陈新 周健 齐冲冲 陈秋松 饶帝军

文章页码:1087 - 1102

关键词:纤维尾砂胶结充填材料;单轴抗压强度;预测;极限学习机;樽海鞘算法

Key words:fiber-reinforced cemented paste backfill; unconfined compressive strength; prediction; extreme learning machine; salp swarm algorithm

摘    要:为降低纤维尾砂胶结充填材料单轴压缩强度数据的获取难度,综合分析常规充填材料参数与纤维参数对其单轴压缩性能的影响,结合元启发式算法(樽海鞘算法, SSA)与极限学习机技术(ELM),提出一种新型人工智能模型(SSA-ELM)。为检验模型可靠性,开展720组不同灰砂质量比、固体质量浓度、纤维含量、纤维长度和养护时间的纤维尾砂胶结充填材料单轴抗压实验以建立充填材料强度性能数据库。研究结果表明,训练好的SSA-ELM模型能够准确地预测纤维尾砂胶结充填材料的单轴压缩强度,其性能优于ANN、SVR和ELM方法;纤维含量和纤维长度对纤维尾砂胶结充填材料单轴压缩性能具有重要影响。

Abstract: To reduce the difficulty of obtaining the unconfined compressive strength (UCS) value of fiber-reinforced cemented paste backfill (CPB) and analyze the comprehensive impact of conventional and fiber variables on the compressive property, a new artificial intelligence model was proposed by combining a newly invented meta-heuristics algorithm (salp swarm algorithm, SSA) and extreme learning machine (ELM) technology. Aiming to test the reliability of that model, 720 UCS tests with different cement-to-tailing mass ratio, solid mass concentration, fiber content, fiber length, and curing time were carried out, and a strength evaluation database was collected. The obtained results show that the optimized SSA-ELM model can accurately predict the uniaxial compressive strength of the fiber-reinforced CPB, and the model performance of SSA-ELM model is better than ANN, SVR and ELM models. Variable sensitivity analysis indicates that fiber content and fiber length have a significant effect on the UCS of fiber-reinforced CPB.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号