简介概要

基于条件生成对抗网络的不平衡学习研究

来源期刊:控制与决策2021年第3期

论文作者:赵海霞 石洪波 武建 陈鑫

文章页码:619 - 628

关键词:不平衡学习;类别重叠;重抽样方法;条件生成对抗网络;

摘    要:对于不平衡数据的分类,不平衡率并不是影响分类效果的唯一因素,类别间的重叠、正类样本的分离以及噪音样本的存在等均会对分类效果造成影响.针对具有类别重叠的不平衡数据集,提出基于CGAN模型的重抽样方法(RECGAN).该方法结合负类样本的欠抽样和正类样本的过抽样,既能够提高重叠区域正类样本的识别度,又可以克服以往均从样本点的局部邻域出发合成样本的缺陷.实验结果表明,无论是从AUC和F1的取值看,还是从数据集上的平均排序看, RECGAN方法均具有明显的优势.

详情信息展示

基于条件生成对抗网络的不平衡学习研究

赵海霞1,石洪波2,武建3,4,陈鑫2

1. 山西财经大学统计学院2. 山西财经大学信息学院3. 山西财经大学应用数学学院4. 太原理工大学信息与计算机学院

摘 要:对于不平衡数据的分类,不平衡率并不是影响分类效果的唯一因素,类别间的重叠、正类样本的分离以及噪音样本的存在等均会对分类效果造成影响.针对具有类别重叠的不平衡数据集,提出基于CGAN模型的重抽样方法(RECGAN).该方法结合负类样本的欠抽样和正类样本的过抽样,既能够提高重叠区域正类样本的识别度,又可以克服以往均从样本点的局部邻域出发合成样本的缺陷.实验结果表明,无论是从AUC和F1的取值看,还是从数据集上的平均排序看, RECGAN方法均具有明显的优势.

关键词:不平衡学习;类别重叠;重抽样方法;条件生成对抗网络;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号