简介概要

Improved sulfur-resistant ability on CO oxidation of Pd/Ce_(0.75)Zr_(0.25)O_2 over Pd/CeO2-TiO2 and Pd/CeO2

来源期刊:Journal of Rare Earths2015年第1期

论文作者:沈美庆 林放 魏光曦 王建强 朱少春

文章页码:56 - 61

摘    要:The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment.

详情信息展示

Improved sulfur-resistant ability on CO oxidation of Pd/Ce_(0.75)Zr_(0.25)O_2 over Pd/CeO2-TiO2 and Pd/CeO2

沈美庆1,2,3,林放1,魏光曦1,王建强1,朱少春1

1. Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University2. State Key Laboratory of Engines, Tianjin University

摘 要:The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号