基于改进RBF神经网络的巷道变形预测模型
来源期刊:金属矿山2016年第8期
论文作者:崔一 杨勇辉
文章页码:170 - 173
关键词:巷道变形预测;RBF神经网络;贝叶斯阴阳和谐学习算法;对角型广义RBF神经网络;
摘 要:由于经典RBF神经网络中的隐含层节点数、连接权值等结构参数基本由经验获取,因此经典RBF神经网络模型的性能取决于建立模型专家的主观性,存在一定的盲目性和随机性,难以对巷道变形进行准确预测。为此,采用贝叶斯阴阳和谐学习算法对经典RBF神经网络模型的隐含层节点个数、连接权值等结构参数进行了优化,提出了一种基于改进RBF神经网络的巷道变形预测模型,即对角型广义RBF神经网络模型。采用潞安和兖州矿区的综放回采巷道的现场长期监测数据分别对经典RBF神经网络模型以及对角型广义RBF神经网络模型进行了试验分析,结果显示:1对巷道顶底板变形进行预测时,对角型广义RBF神经网络模型的准确率约92.2%,经典RBF神经网络模型的准确率约80.6%;2对煤帮变形进行预测时,对角型广义RBF神经网络模型的准确率约90.2%,经典RBF神经网络模型的准确率约78.6%。上述试验结果表明,对角型广义RBF神经网络模型对于巷道变形预测的精度明显优于经典RBF神经网络模型,对于高精度巷道变形预测有一定的参考价值。
崔一1,杨勇辉2
1. 平顶山工业职业技术学院成人教育学院2. 平顶山工业职业技术学院职业教育研究所
摘 要:由于经典RBF神经网络中的隐含层节点数、连接权值等结构参数基本由经验获取,因此经典RBF神经网络模型的性能取决于建立模型专家的主观性,存在一定的盲目性和随机性,难以对巷道变形进行准确预测。为此,采用贝叶斯阴阳和谐学习算法对经典RBF神经网络模型的隐含层节点个数、连接权值等结构参数进行了优化,提出了一种基于改进RBF神经网络的巷道变形预测模型,即对角型广义RBF神经网络模型。采用潞安和兖州矿区的综放回采巷道的现场长期监测数据分别对经典RBF神经网络模型以及对角型广义RBF神经网络模型进行了试验分析,结果显示:1对巷道顶底板变形进行预测时,对角型广义RBF神经网络模型的准确率约92.2%,经典RBF神经网络模型的准确率约80.6%;2对煤帮变形进行预测时,对角型广义RBF神经网络模型的准确率约90.2%,经典RBF神经网络模型的准确率约78.6%。上述试验结果表明,对角型广义RBF神经网络模型对于巷道变形预测的精度明显优于经典RBF神经网络模型,对于高精度巷道变形预测有一定的参考价值。
关键词:巷道变形预测;RBF神经网络;贝叶斯阴阳和谐学习算法;对角型广义RBF神经网络;