Intergranular corrosion behavior and mechanism of the stabilized ultra-pure 430LX ferritic stainless steel
来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第8期
论文作者:Peize Cheng Ning Zhong Nianwei Dai Xuan Wu Jin Li Yiming Jiang
文章页码:1787 - 1796
摘 要:Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750℃ for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M23C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.
Peize Cheng1,Ning Zhong2,Nianwei Dai1,Xuan Wu1,Jin Li1,Yiming Jiang1
1. Department of Materials Science,Fudan University2. Institute of Marine Materials Science and Engineering,Shanghai Maritime University
摘 要:Intergranular corrosion(IGC) behavior of the stabilized ultra-pure 430 LX ferritic stainless steel(FSS) was investigated by using double loop electrochemical potentiokinetic reactivation(DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750℃ for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M23C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.
关键词: