简介概要

Microstructure and Mechanical Properties of an in situ Synthesized TiB and TiC Reinforced Titanium Matrix Composite Coating

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2012年第1期

论文作者:李军

文章页码:1 - 8

摘    要:A titanium-based composite coating reinforced by in situ synthesized TiB and TiC particles was fabricated on Ti6Al4V by laser cladding. The microstructure and mechanical properties were investigated. The coating was mainly composed of β-Ti cellular dendrites and an eutectic in which a large number of rod/needle-shaped TiB and a few equiaxial TiC particles were homogeneously embedded. The microstructural evolution could be divided into four stages: precipitation and growth of primary β-Ti phase, formation of the binary eutectic β-Ti+TiB, formation of the ternary eutectic β-Ti+TiB+TiC, and solid transformation from β-Ti to β-Ti. Microhardness of the coating showed a gradient variation from the surface (about HV0.2 876) to the bottom (about HV0.2 660) and was prominently improved in comparison with that of the substrate. Fracture toughness of the coating also exhibited a gradient variation from the surface (6.3 MPa·m1/2) to the interface (11.9 MPa·m1/2). Wear resistance of the coating was significantly superior to that of Ti6Al4V.

详情信息展示

Microstructure and Mechanical Properties of an in situ Synthesized TiB and TiC Reinforced Titanium Matrix Composite Coating

李军

School of Materials Engineering, Shanghai University of Engineering Science

摘 要:A titanium-based composite coating reinforced by in situ synthesized TiB and TiC particles was fabricated on Ti6Al4V by laser cladding. The microstructure and mechanical properties were investigated. The coating was mainly composed of β-Ti cellular dendrites and an eutectic in which a large number of rod/needle-shaped TiB and a few equiaxial TiC particles were homogeneously embedded. The microstructural evolution could be divided into four stages: precipitation and growth of primary β-Ti phase, formation of the binary eutectic β-Ti+TiB, formation of the ternary eutectic β-Ti+TiB+TiC, and solid transformation from β-Ti to β-Ti. Microhardness of the coating showed a gradient variation from the surface (about HV0.2 876) to the bottom (about HV0.2 660) and was prominently improved in comparison with that of the substrate. Fracture toughness of the coating also exhibited a gradient variation from the surface (6.3 MPa·m1/2) to the interface (11.9 MPa·m1/2). Wear resistance of the coating was significantly superior to that of Ti6Al4V.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号