简介概要

First-Principles Calculations of Electronic, Elastic and Thermal Properties of Magnesium Doped with Alloying Elements

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2018年第1期

论文作者:杨晓敏 赵宇宏 HOU Hua ZHENG Shuhua HAN Peide

文章页码:198 - 203

摘    要:First-principles calculations have been carried out to investigate the effects of alloying elements(Zn, Li, Y and Sc) on the electronic structure, elastic and thermal properties of Mg solid solution. The calculated cohesive energies show that Mg-Sc has the highest structural stability. The calculations of the densities of states(DOS) and electronic charge density difference indicate that Mg-Y(Sc) alloys have very strong covalent bonding due to a very strong Mg p-Y(Sc) d hybridization. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson ratio ν are derived using Voigt-Reuss-Hill(VRH) approximation. The results show that all the alloys can exhibit ductile properties at 2.77 at% R, and Mg-Zn(Li) alloys have the better ductility and plasticity. In the end, the Debye temperature and isochoric heat capacity are also calculated and discussed.

详情信息展示

First-Principles Calculations of Electronic, Elastic and Thermal Properties of Magnesium Doped with Alloying Elements

杨晓敏1,赵宇宏1,HOU Hua1,ZHENG Shuhua2,HAN Peide3

1. College of Materials Science and Engineering, North University of China2. School of Automation, Beijing Institute of Technology3. College of Materials Science and Engineering, Taiyuan University of Technology

摘 要:First-principles calculations have been carried out to investigate the effects of alloying elements(Zn, Li, Y and Sc) on the electronic structure, elastic and thermal properties of Mg solid solution. The calculated cohesive energies show that Mg-Sc has the highest structural stability. The calculations of the densities of states(DOS) and electronic charge density difference indicate that Mg-Y(Sc) alloys have very strong covalent bonding due to a very strong Mg p-Y(Sc) d hybridization. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson ratio ν are derived using Voigt-Reuss-Hill(VRH) approximation. The results show that all the alloys can exhibit ductile properties at 2.77 at% R, and Mg-Zn(Li) alloys have the better ductility and plasticity. In the end, the Debye temperature and isochoric heat capacity are also calculated and discussed.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号