简介概要

Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al–TM–RE Based Amorphous Alloys

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2015年第11期

论文作者:Ram S.Maurya Tapas Laha

文章页码:1118 - 1124

摘    要:The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys(Al86Ni8Y6, Al86Ni6Y6Co2, Al86Ni8La6 and Al86Ni8Y4.5La1.5) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth(RE) and transition metal(TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.

详情信息展示

Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al–TM–RE Based Amorphous Alloys

Ram S.Maurya,Tapas Laha

Department of Metallurgical & Materials Engineering, Indian Institute of Technology Kharagpur

摘 要:The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys(Al86Ni8Y6, Al86Ni6Y6Co2, Al86Ni8La6 and Al86Ni8Y4.5La1.5) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth(RE) and transition metal(TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号