用BP神经网络提高锂离子电池化成系统采样精度

来源期刊:中南大学学报(自然科学版)2010年第1期

论文作者:吴免利 李劼 肖昕 邹忠

文章页码:55 - 59

关键词:L-M BP神经网络;锂离子电池;化成系统中图分类号:TM 910.6 文献标志码:A

Key words:Levenberg-Marquardt BP neural network; Li-ion battery; formation system

摘    要:针对自行设计的YX-20A型锂离子电池化成柜采样精度不高的问题,分别采用动量梯度下降法和L-M优化法以三层BP神经网络为预测模型对采样电流数据进行校正;并用校正后的采样数据通过TL494芯片调节设定基准和充放电电流实测值的偏差。研究结果表明: L-M算法能快速收敛,效果优于动量梯度下降法,当隐含层节点数为9时,L-M算法效果最佳;校正后的电流最大相对误差由原来的5%降到1.1%左右,平均误差小于0.5%;校正后基准电流和实测值间的相对误差波动较平缓,其最大相对误差比校正前有明显下降。

Abstract: Aiming at the solution of low sampling precision problem of developed YX-20A Li-ion formation equipment, two improved algorithms of three layers back-propagation neural network, namely gradient descent with momentum and Levenberg-Marquardt optimization, were introduced as forecasting models to correct the sampling electric current data; then the corrected sampling data were used to adjust deviation between basic set-point values and measured ones through TL494 chip. The results show that Levenberg-Marquardt optimization with 9 nodes in its hidden layer has the advantages of faster learning rate and higher precision; the maximum relevant error between former electric current and corrected values declines from about 5% to 1.1%, and the average relevant error is less than 0.5%; the corrected relevant errors between measured values and basic set-point values fluctuate gently, and the maximum relevant error goes down evidently by amelioration.

基金信息:国家“十一五”科技支撑计划项目

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号