简介概要

Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C

来源期刊:Acta Metallurgica Sinica2019年第3期

论文作者:Liu Liu Jie Meng Jin-Lai Liu Hai-Feng Zhang Xu-Dong Sun Yi-Zhou Zhou

文章页码:381 - 390

摘    要:The influence of crystal orientations on the low-cycle fatigue(LCF) behavior of a 3Re-bearing Ni-based single-crystal superalloy at 980 °C has been investigated. It is found that the orientation dependence of the fatigue life not only depends on the elastic modulus, but also the number of active slip planes and the plasticity of materials determine the LCF life,especially for the [011] and [111] specimens. The [011] and [111] specimens with better plasticity withstand relatively concentrated inelastic deformation caused by fewer active slip planes, compared to the [001] specimens resisting widespread deformation caused by a higher number of active slip planes. Additionally, fatigue fracture is also influenced by cyclic plastic deformation mechanisms of the alloy with crystal orientations, and the [001] specimens are plastically deformed by wave slip mechanism and fracture along the non-crystallographic plane, while the [011] and [111] specimens are plastically deformed by planar slip mechanism and fracture along the crystallographic planes. Moreover, casting pores,eutectics, inclusions and surface oxide layers not only initiate the crack, but also reduce the stress concentration around crack tips. Our results throw light upon the effect of inelastic strain on the LCF life and analyze the cyclic plastic deformation for the alloy with different orientations.

详情信息展示

Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C

Liu Liu1,2,Jie Meng2,Jin-Lai Liu2,Hai-Feng Zhang1,3,Xu-Dong Sun1,Yi-Zhou Zhou2

1. School of Materials Science and Engineering, Northeastern University2. Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences3. Shenyang National Laboratory for Materials Science,Institute of Metal Research, Chinese Academy of Sciences

摘 要:The influence of crystal orientations on the low-cycle fatigue(LCF) behavior of a 3Re-bearing Ni-based single-crystal superalloy at 980 °C has been investigated. It is found that the orientation dependence of the fatigue life not only depends on the elastic modulus, but also the number of active slip planes and the plasticity of materials determine the LCF life,especially for the [011] and [111] specimens. The [011] and [111] specimens with better plasticity withstand relatively concentrated inelastic deformation caused by fewer active slip planes, compared to the [001] specimens resisting widespread deformation caused by a higher number of active slip planes. Additionally, fatigue fracture is also influenced by cyclic plastic deformation mechanisms of the alloy with crystal orientations, and the [001] specimens are plastically deformed by wave slip mechanism and fracture along the non-crystallographic plane, while the [011] and [111] specimens are plastically deformed by planar slip mechanism and fracture along the crystallographic planes. Moreover, casting pores,eutectics, inclusions and surface oxide layers not only initiate the crack, but also reduce the stress concentration around crack tips. Our results throw light upon the effect of inelastic strain on the LCF life and analyze the cyclic plastic deformation for the alloy with different orientations.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号