简介概要

High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第3期

论文作者:Lixin Yang Hualong Ge Jian Zhang Ting Xiong Qianqian Jin Yangtao Zhou Xiaohong Shao Bo Zhang Zhengwang Zhu Shijian Zheng Xiuliang Ma

文章页码:300 - 305

摘    要:High entropy alloys(HEAs) have presented potential applications in nuclear power plants owing to their novel atomic structure based high irradiation resistance. However, understanding of He-ion irradiation of HEAs is still lacking. In this work, we reveal He-ion irradiation resistance of HEA CrMnFeCoNi by comparison study with a pure Ni and a 304 stainless steel(304SS). It is found that the damage structure in the three materials can be characterized with He bubbles and stacking faults/stacking fault tetrahedrons((SFs/SFTs), which show a similar depth distribution after He-ion irradiation at both RT and 450℃.Although the He bubbles have a similar size about 2nm after irradiation at RT, the He bubble sizes of the HEA, 304SS, and Ni increase to 4.0±0.9,5.3±1.0 and 6.7 ±1.0 nm after irradiation at 450℃, respectively. Moreover, the density of SFs/SFTs displays in an order of Ni < 304 SS < HEA at both RT and 450℃.The He-ion irradiation at RT causes significant hardness enhancement for the three materials, however,compared to RT, after irradiation at 450℃, the Ni presents softening, while the 304SS, especially the HEA,shows further hardening. Thus, the HEA CrMnFeCoNi possesses the smallest He bubble size, the densest SFs/SFTs, and the highest hardening, indicating the best structural stability, as well as the best He-ion irradiation resistance, which can be attributed to its low mobility of He atoms and point defects.

详情信息展示

High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS

Lixin Yang1,2,Hualong Ge1,2,Jian Zhang3,Ting Xiong1,2,Qianqian Jin1,2,Yangtao Zhou1,2,Xiaohong Shao1,2,Bo Zhang1,2,Zhengwang Zhu1,2,Shijian Zheng1,2,Xiuliang Ma1,2,4

1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences2. School of Material Science and Engineering, University of Science and Technology of China3. School of Energy Research, Xiamen University4. School of Material Science and Engineering, Lanzhou University of Technology

摘 要:High entropy alloys(HEAs) have presented potential applications in nuclear power plants owing to their novel atomic structure based high irradiation resistance. However, understanding of He-ion irradiation of HEAs is still lacking. In this work, we reveal He-ion irradiation resistance of HEA CrMnFeCoNi by comparison study with a pure Ni and a 304 stainless steel(304SS). It is found that the damage structure in the three materials can be characterized with He bubbles and stacking faults/stacking fault tetrahedrons((SFs/SFTs), which show a similar depth distribution after He-ion irradiation at both RT and 450℃.Although the He bubbles have a similar size about 2nm after irradiation at RT, the He bubble sizes of the HEA, 304SS, and Ni increase to 4.0±0.9,5.3±1.0 and 6.7 ±1.0 nm after irradiation at 450℃, respectively. Moreover, the density of SFs/SFTs displays in an order of Ni < 304 SS < HEA at both RT and 450℃.The He-ion irradiation at RT causes significant hardness enhancement for the three materials, however,compared to RT, after irradiation at 450℃, the Ni presents softening, while the 304SS, especially the HEA,shows further hardening. Thus, the HEA CrMnFeCoNi possesses the smallest He bubble size, the densest SFs/SFTs, and the highest hardening, indicating the best structural stability, as well as the best He-ion irradiation resistance, which can be attributed to its low mobility of He atoms and point defects.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号