简介概要

Effect of Neodymium on As-Cast Microstructure and Mechanical Properties of AZ31 Wrought Alloy

来源期刊:JOURNAL OF RARE EARTHS2007年增刊第1期

论文作者:Zhang Junyuan

Key words:magnesium alloy; Nd; As-cast microstructure; mechanical property; rare earths;

Abstract: Nd in the form of powder or intermediate alloy was added to AZ31 wrought alloy. The as-obtained alloy was characterized and tested with respect to its microstructure and mechanical properties. The relationship between the microstructure, mechanical properties and tensile fracture mechanism were discussed, with relevant alloys as reference for comparison. Experimental results show that the same quantity of Nd was added into AZ31 in powder form or in intermediate alloy, the absorption rate of Nd reached only 10.8% for the former case and as high as 95% for the later case. Pure Nd powder was added, no new compound was detected, but it served as reductant and purified alloy melt, resulting in improving the tensile strength while Nd was added into AZ31 as Mg-Nd intermediate alloy. The compound Al2Nd and Mg12 Nd were formed in magnesium alloy, which were distributed in the matrix in the shapes of strip and particle, evidently refined the as-cast structure. The as-cast tensile strength (228MPa) of adding pure Nd powder approximated to the figure (245MPa) of adding Mg-Nd intermediate alloy. The tensile fracture mchanism of as-cast AZ31 transformed from cleavage fracture into quasi-cleavage fracture.

详情信息展示

Effect of Neodymium on As-Cast Microstructure and Mechanical Properties of AZ31 Wrought Alloy

Liu Xuguang1,Xu Bingshe1,Zhang Junyuan1,Fan Jinping1,Li Mingzhao1

(1.College of Materials Science and Engineering, Taiyuan University of Technology, taiyuan 030024, China;
2.Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan 030024, China)

Abstract:Nd in the form of powder or intermediate alloy was added to AZ31 wrought alloy. The as-obtained alloy was characterized and tested with respect to its microstructure and mechanical properties. The relationship between the microstructure, mechanical properties and tensile fracture mechanism were discussed, with relevant alloys as reference for comparison. Experimental results show that the same quantity of Nd was added into AZ31 in powder form or in intermediate alloy, the absorption rate of Nd reached only 10.8% for the former case and as high as 95% for the later case. Pure Nd powder was added, no new compound was detected, but it served as reductant and purified alloy melt, resulting in improving the tensile strength while Nd was added into AZ31 as Mg-Nd intermediate alloy. The compound Al2Nd and Mg12 Nd were formed in magnesium alloy, which were distributed in the matrix in the shapes of strip and particle, evidently refined the as-cast structure. The as-cast tensile strength (228MPa) of adding pure Nd powder approximated to the figure (245MPa) of adding Mg-Nd intermediate alloy. The tensile fracture mchanism of as-cast AZ31 transformed from cleavage fracture into quasi-cleavage fracture.

Key words:magnesium alloy; Nd; As-cast microstructure; mechanical property; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号