简介概要

Remote sensing image classification based on BP neural network model

来源期刊:中国有色金属学报(英文版)2005年第z1期

论文作者:ZHENG Yong-guo WANG Ping MA Jing ZHANG Hong-bo

文章页码:232 - 235

Key words:remote sensing image; classification; neural network; training intensity

Abstract: Aiming at the characteristics of remote sensing image classification, the mixed pixel problem is one of the main factors that affect the improvement of classifying precision in remote sensing classification. A BP neural network was established to solve mixed pixel classifying problems. The aim of our work is to improve the BP network algorithm and set the intensity of training, which changes with training process, because the BP algorithm converyging speed of learning algorithm is rather slow, it is possible to fall into the local minimum, and because the algorithm makes the learning result poor, the global minimum value can’t be reached. The results show that this method effectively solves mixed pixel classifying problem, improves learning speed and classification accuracy of BP network classifier,so it is one kind of effective remote sensing imagery classifying method.

详情信息展示

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号