简介概要

Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering

来源期刊:International Journal of Minerals Metallurgy and Materials2015年第6期

论文作者:Xian-feng Yang Jiang-hong Yang Xie-wen Xu Qi-cheng Liu Zhi-peng Xie Wei Liu

文章页码:654 - 659

摘    要:The ceramic injection molding technique was used in the gas-pressure sintering of ultra-fine Si3N4 powder. The feedstock’s flowability, debinding rate, defect evolution, and microstructural evolution during production were explored. The results show that the solid volume loading of less than 50vol% and the surfactant mass fraction of 6wt% result in a perfect flowability of feedstock; this feedstock is suitable for injection molding. When the debinding time is 8 h at 40°C, approximately 50% of the wax can be solvent debinded. Defects detected during the preparation are traced to improper injection parameters, mold design, debinding parameters, residual stress, or inhomogeneous composition distribution in the green body. The bulk density, Vickers hardness, and fracture toughness of the gas-pressure-sintered Si3N4 ceramic reach 3.2 g/cm3, 16.5 GPa, and 7.2 MPa·m1/2, respectively.

详情信息展示

Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering

Xian-feng Yang1,Jiang-hong Yang1,Xie-wen Xu1,Qi-cheng Liu1,Zhi-peng Xie2,Wei Liu2

1. College of Physics and Electronics Science,Changsha University of Science and Technology2. School of Materials Science and Engineering,Tsinghua University

摘 要:The ceramic injection molding technique was used in the gas-pressure sintering of ultra-fine Si3N4 powder. The feedstock’s flowability, debinding rate, defect evolution, and microstructural evolution during production were explored. The results show that the solid volume loading of less than 50vol% and the surfactant mass fraction of 6wt% result in a perfect flowability of feedstock; this feedstock is suitable for injection molding. When the debinding time is 8 h at 40°C, approximately 50% of the wax can be solvent debinded. Defects detected during the preparation are traced to improper injection parameters, mold design, debinding parameters, residual stress, or inhomogeneous composition distribution in the green body. The bulk density, Vickers hardness, and fracture toughness of the gas-pressure-sintered Si3N4 ceramic reach 3.2 g/cm3, 16.5 GPa, and 7.2 MPa·m1/2, respectively.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号