简介概要

Strong dependence of upconversion luminescence on doping concentration in holmium and ytterbium co-doped Y2O3 phosphor

来源期刊:JOURNAL OF RARE EARTHS2011年第6期

论文作者:韦先涛 李勇 程学瑞 陈永虎 尹民

文章页码:536 - 539

摘    要:Under the excitation of 980 nm diode laser, intense green emission (5F4+5S2-5I8) of Ho3+ was observed in Ho3+ and Yb3+ co-doped cubic Y2O3. The doping concentration and laser power dependence of the upconverted emission were studied. The decay curves of 5F4+5S2 emission of Ho3+ under the excitation of 355 nm pulse laser were measured to investigate the energy transfer process between Ho3+ and Yb3+. The results indicated that two-photon process was responsible for the upconversion (UC) emission. The Ho3+ concentration of 0.04 mol.% and the Yb3+ concentration of 5 mol.% were determined to be the best value for the strongest Ho3+ emission under the excitation of 980 nm light. The cross-relaxation between two neighboring Ho3+ ions and the back energy transfer from Ho3+ to Yb3+ were important factors for determin- ing the optimal doping concentration. This material was a promising candidate for the application in biomedical fluorescent labels for the intense green emission upon excitation of near-infrared (NIR) light.

详情信息展示

Strong dependence of upconversion luminescence on doping concentration in holmium and ytterbium co-doped Y2O3 phosphor

韦先涛1,李勇2,程学瑞1,陈永虎1,尹民1

1. Department of Physics, University of Science and Technology of China2. School of Mathematics & Physics, Anhui University of Technology

摘 要:Under the excitation of 980 nm diode laser, intense green emission (5F4+5S2-5I8) of Ho3+ was observed in Ho3+ and Yb3+ co-doped cubic Y2O3. The doping concentration and laser power dependence of the upconverted emission were studied. The decay curves of 5F4+5S2 emission of Ho3+ under the excitation of 355 nm pulse laser were measured to investigate the energy transfer process between Ho3+ and Yb3+. The results indicated that two-photon process was responsible for the upconversion (UC) emission. The Ho3+ concentration of 0.04 mol.% and the Yb3+ concentration of 5 mol.% were determined to be the best value for the strongest Ho3+ emission under the excitation of 980 nm light. The cross-relaxation between two neighboring Ho3+ ions and the back energy transfer from Ho3+ to Yb3+ were important factors for determin- ing the optimal doping concentration. This material was a promising candidate for the application in biomedical fluorescent labels for the intense green emission upon excitation of near-infrared (NIR) light.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号