简介概要

Effect of Niobium on Microstructure and Properties of the CoCrFeNb_xNi High Entropy Alloys

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第7期

论文作者:Hui Jiang Li Jiang Dongxu Qiao Yiping Lu Tongmin Wang Zhiqiang Cao Tingju Li

文章页码:712 - 717

摘    要:A series of CoCrFeNbxNi(x values in molar ratio, x = 0, 0.25, 0.45, 0.5, 0.75, 1.0 and 1.2) high entropy alloys(HEAs) was prepared to investigate the alloying effect of Nb on the microstructures and mechanical properties. The results indicate that the prepared CoCrFeNbxNi(x > 0) HEAs consist of a simple FCC solid solution phase and a Laves phase. The microstructures of the alloys change from an initial single-phase FCC solid solution structure(x = 0) to a hypoeutectic microstructure(x = 0.25), then to a full eutectic microstructure(x = 0.45) and finally to a hypereutectic microstructure(0.5 < x < 1.2). The compressive test results show that the Nb0.45(x = 0.45) alloy with a full eutectic microstructure possesses the highest compressive fracture strength of 2558 MPa and a fracture strain of 27.9%. The CoCrFeNi alloy exhibits an excellent compressive ductility, which can reach 50% height reduction without fracture. The Nb0.25 alloy with a hypoeutectic structure exhibits a larger plastic strain of 34.8%. With the increase of Nb content, increased hard/brittle Laves phase leads to a decrease of the plasticity and increases of the Vickers hardness and the wear resistance. The wear mass loss, width and depth of wear scar of the Nb1.2(x = 1.2) alloy with a hypereutectic structure are the lowest among all alloy systems, indicating that the wear resistance of the Nb1.2 alloy is the best one.

详情信息展示

Effect of Niobium on Microstructure and Properties of the CoCrFeNb_xNi High Entropy Alloys

Hui Jiang,Li Jiang,Dongxu Qiao,Yiping Lu,Tongmin Wang,Zhiqiang Cao,Tingju Li

Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology

摘 要:A series of CoCrFeNbxNi(x values in molar ratio, x = 0, 0.25, 0.45, 0.5, 0.75, 1.0 and 1.2) high entropy alloys(HEAs) was prepared to investigate the alloying effect of Nb on the microstructures and mechanical properties. The results indicate that the prepared CoCrFeNbxNi(x > 0) HEAs consist of a simple FCC solid solution phase and a Laves phase. The microstructures of the alloys change from an initial single-phase FCC solid solution structure(x = 0) to a hypoeutectic microstructure(x = 0.25), then to a full eutectic microstructure(x = 0.45) and finally to a hypereutectic microstructure(0.5 < x < 1.2). The compressive test results show that the Nb0.45(x = 0.45) alloy with a full eutectic microstructure possesses the highest compressive fracture strength of 2558 MPa and a fracture strain of 27.9%. The CoCrFeNi alloy exhibits an excellent compressive ductility, which can reach 50% height reduction without fracture. The Nb0.25 alloy with a hypoeutectic structure exhibits a larger plastic strain of 34.8%. With the increase of Nb content, increased hard/brittle Laves phase leads to a decrease of the plasticity and increases of the Vickers hardness and the wear resistance. The wear mass loss, width and depth of wear scar of the Nb1.2(x = 1.2) alloy with a hypereutectic structure are the lowest among all alloy systems, indicating that the wear resistance of the Nb1.2 alloy is the best one.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号