简介概要

Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第5期

论文作者:Quanzhao Yue Lin Liu Wenchao Yang Chuang He Dejian Sun Taiwen Huang Jun Zhang Hengzhi Fu

文章页码:752 - 763

摘    要:Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120–174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa,the creep life increased by a factor of 10.5, from 87 h to 907 h, presenting a strong stress dependence.A splitting phenomenon of the close-(about 100 nm) and sparse-(above 120 nm) spaced dislocation networks became more obvious with increasing stress. Simultaneously, a0<010> superdislocations with low mobilities were frequently observed under a lower stress to pass through γ’precipitates by a combined slip and climb of two a0<110> superpartials or pure climb. However, a0<110> superdislocations with higher mobility were widely found under a higher stress, which directly sheared into γ’precipitates.Based on the calculated critical resolved shear stresses for various creep mechanisms, the favorable creep mechanism was systematically analyzed. Furthermore, combined with the microstructural evolutions during different creep stages, the dominant creep mechanism changed from the dislocation climbing to Orowan looping and precipitates shearing under a stress regime of 137–174 MPa, while the dislocation climbing mechanism was operative throughout the whole creep stage under a stress of 120 MPa, resulting a superior creep performance.

详情信息展示

Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy

Quanzhao Yue,Lin Liu,Wenchao Yang,Chuang He,Dejian Sun,Taiwen Huang,Jun Zhang,Hengzhi Fu

摘 要:Elevated temperature creep behaviors at 1100℃ over a wide stress regime of 120–174 MPa of a thirdgeneration Ni-based single crystal superalloy were studied. With a reduced stress from 174 to 120 MPa,the creep life increased by a factor of 10.5, from 87 h to 907 h, presenting a strong stress dependence.A splitting phenomenon of the close-(about 100 nm) and sparse-(above 120 nm) spaced dislocation networks became more obvious with increasing stress. Simultaneously, a0<010> superdislocations with low mobilities were frequently observed under a lower stress to pass through γ’precipitates by a combined slip and climb of two a0<110> superpartials or pure climb. However, a0<110> superdislocations with higher mobility were widely found under a higher stress, which directly sheared into γ’precipitates.Based on the calculated critical resolved shear stresses for various creep mechanisms, the favorable creep mechanism was systematically analyzed. Furthermore, combined with the microstructural evolutions during different creep stages, the dominant creep mechanism changed from the dislocation climbing to Orowan looping and precipitates shearing under a stress regime of 137–174 MPa, while the dislocation climbing mechanism was operative throughout the whole creep stage under a stress of 120 MPa, resulting a superior creep performance.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号