简介概要

Surface energy-driven solution epitaxial growth of anatase TiO2 homostructures for overall water splitting

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第11期

论文作者:Shi Li Luoyuan Ruan Shanpeng Wang Zhiyu Wang Zhaohui Ren Gaorong Han

文章页码:139 - 144

摘    要:Titanium dioxide(TiO2) has been extensively investigated as a photocatalyst for water splitting to produce H2. However, an overall water splitting by using anatase TiO2 is extremely difficult due to the short lifetime of holes. In this work, we propose that a surface energy decrease from {001} to {101} of anatase TiO2 is able to drive an epitaxial growth. A novel anatase TiO2 homostructure has been successfully synthesized via a facile hydrothermal route, where {101} semi-pyramid nanoparticles epitaxially grew on the both sides of the {001} nanosheets. The epitaxial relationship between the nanoparticles and the nanosheets has been characterized to be {001}//{001} of anatase TiO2. For the first time, it is interesting to find that the homostructure with 12 wt% of {101} semi-pyramid can significantly improve the H2 evolution rate by nearly 5 times compared to the pure nanosheets under the ultraviolet irradiation.More importantly, such homostructure enables 10.78 μmol g-1h-1 of O2 production whereas the pure nanosheets cannot evolve detectable O2 gas. Meanwhile, the time-resolved photoluminescence analysis indicates that the mean lifetime of the holes is increased from 2.20 ns of the nanosheets to 3.59 ns of the homostructure, accounting for the observed overall water splitting. The findings suggest that constructing a homostructure by a surface energy strategy could be promising towards overall water splitting, which may be applicable to other photocatalytic materials.

详情信息展示

Surface energy-driven solution epitaxial growth of anatase TiO2 homostructures for overall water splitting

Shi Li1,Luoyuan Ruan1,Shanpeng Wang2,Zhiyu Wang1,Zhaohui Ren1,2,Gaorong Han1

1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Application, Zhejiang University2. State Key Laboratory of Crystal Materials, Shandong University

摘 要:Titanium dioxide(TiO2) has been extensively investigated as a photocatalyst for water splitting to produce H2. However, an overall water splitting by using anatase TiO2 is extremely difficult due to the short lifetime of holes. In this work, we propose that a surface energy decrease from {001} to {101} of anatase TiO2 is able to drive an epitaxial growth. A novel anatase TiO2 homostructure has been successfully synthesized via a facile hydrothermal route, where {101} semi-pyramid nanoparticles epitaxially grew on the both sides of the {001} nanosheets. The epitaxial relationship between the nanoparticles and the nanosheets has been characterized to be {001}//{001} of anatase TiO2. For the first time, it is interesting to find that the homostructure with 12 wt% of {101} semi-pyramid can significantly improve the H2 evolution rate by nearly 5 times compared to the pure nanosheets under the ultraviolet irradiation.More importantly, such homostructure enables 10.78 μmol g-1h-1 of O2 production whereas the pure nanosheets cannot evolve detectable O2 gas. Meanwhile, the time-resolved photoluminescence analysis indicates that the mean lifetime of the holes is increased from 2.20 ns of the nanosheets to 3.59 ns of the homostructure, accounting for the observed overall water splitting. The findings suggest that constructing a homostructure by a surface energy strategy could be promising towards overall water splitting, which may be applicable to other photocatalytic materials.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号