简介概要

Creep Model of High-Strength High-Performance Concrete Under Cyclic Loading

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第3期

论文作者:李倩 LIU Muyu LU Zhifang 邓晓光

文章页码:622 - 629

摘    要:Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loading γcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.

详情信息展示

Creep Model of High-Strength High-Performance Concrete Under Cyclic Loading

李倩,LIU Muyu,LU Zhifang,邓晓光

摘 要:Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loading γcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号