简介概要

Processing,Microstructures,and Mechanical Properties of Magnesium Matrix Composites:A Review

来源期刊:Acta Metallurgica Sinica2014年第5期

论文作者:Liqing Chen Yantao Yao

文章页码:762 - 774

摘    要:In the last two decades, light-weight magnesium matrix composites have been the hot issue of material field due to their excellent mechanical and physical properties, e.g., high-specific strength and modulus, good wear resistance, and damping capacity. As compared with aluminum matrix composites, magnesium matrix composites have merit in their specific weight and have wide applications in aerospace and aeronautical fields. Generally, the processing techniques for magnesium matrix composites can be categorized as conventional and special processing routes. In recent years, as a special processing route, metal melt infiltration into porous ceramic preform featured by its low cost and availability of high-volume fraction of reinforced ceramics have been receiving much attention. Thus, in this review, one emphasis was put on the description of this processing technique in association with the means to obtain good wettability, the prerequisite for this kind of processing method. Based on the recognized fact that there exist clean interface and bonding ability between ceramics and matrix metal, in-situ reaction synthesis is usually utilized to fabricate magnesium matrix composites.Therefore, the interfacial feature was also reviewed for the in-situ reaction synthesis. Characterizations of microstructures and various mechanical–physical properties were finally summarized for magnesium matrix composites including tensile response, wear resistance, creep behavior, and damping capacity.

详情信息展示

Processing,Microstructures,and Mechanical Properties of Magnesium Matrix Composites:A Review

Liqing Chen,Yantao Yao

State Key Laboratory of Rolling and Automation,Northeastern University

摘 要:In the last two decades, light-weight magnesium matrix composites have been the hot issue of material field due to their excellent mechanical and physical properties, e.g., high-specific strength and modulus, good wear resistance, and damping capacity. As compared with aluminum matrix composites, magnesium matrix composites have merit in their specific weight and have wide applications in aerospace and aeronautical fields. Generally, the processing techniques for magnesium matrix composites can be categorized as conventional and special processing routes. In recent years, as a special processing route, metal melt infiltration into porous ceramic preform featured by its low cost and availability of high-volume fraction of reinforced ceramics have been receiving much attention. Thus, in this review, one emphasis was put on the description of this processing technique in association with the means to obtain good wettability, the prerequisite for this kind of processing method. Based on the recognized fact that there exist clean interface and bonding ability between ceramics and matrix metal, in-situ reaction synthesis is usually utilized to fabricate magnesium matrix composites.Therefore, the interfacial feature was also reviewed for the in-situ reaction synthesis. Characterizations of microstructures and various mechanical–physical properties were finally summarized for magnesium matrix composites including tensile response, wear resistance, creep behavior, and damping capacity.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号