Effects of supports and combined process on hydrogen purification over nickel supported catalysts
来源期刊:Journal of Rare Earths2020年第1期
论文作者:Menglan Xiao Lu Zhang Yanyan Sang Zhiming Gao
文章页码:52 - 58
摘 要:Hydrogen purification must be done to meet the different purposes of hydrogen utilization.In the present work,it is confirmed that the catalyst Ni/CeO2 has the highest activity for total methanation(Total MET) of CO and CO2,and is thus most suitable for hydrogen purification for ammonia synthesis.While,the catalyst Ni/ZrO2 appears the best one for selective methanation of CO(CO-SMET) in the H2-rich gas to produce clean fuel for proton exchange membrane fuel cell(PEMFC).In spite of this,the catalyst Ni/ZrO2 without adding chlorine ions as promoter is not yet capable of removing the CO in the reformate gas to below 10 ppm in a wide reaction temperature range by the way of CO-SMET.Adding chlorine ions as promoter is indeed not favorable for practical application due to its gradual loss in the catalytic reaction as proved in our previous work.Therefore,a step to decrease CO2 concentration(called as de-CO2 step) is suggested to be set prior to the CO-SMET step in this work.It is proved that such combination of de-CO2 step and CO-SMET step is efficient to achieve a deep removal of CO to below 10 ppm with a high selectivity more than 50% in a wide reaction temperature range of 220—280℃over the catalyst Ni/ZrO2 without adding chlorine ions as promoter.The combined process has potential for practical application,at least in the large-scale power plant of PEMFC.
Menglan Xiao,Lu Zhang,Yanyan Sang,Zhiming Gao
School of Chemistry and Chemical Engineering,Beijing Institute of Technology
摘 要:Hydrogen purification must be done to meet the different purposes of hydrogen utilization.In the present work,it is confirmed that the catalyst Ni/CeO2 has the highest activity for total methanation(Total MET) of CO and CO2,and is thus most suitable for hydrogen purification for ammonia synthesis.While,the catalyst Ni/ZrO2 appears the best one for selective methanation of CO(CO-SMET) in the H2-rich gas to produce clean fuel for proton exchange membrane fuel cell(PEMFC).In spite of this,the catalyst Ni/ZrO2 without adding chlorine ions as promoter is not yet capable of removing the CO in the reformate gas to below 10 ppm in a wide reaction temperature range by the way of CO-SMET.Adding chlorine ions as promoter is indeed not favorable for practical application due to its gradual loss in the catalytic reaction as proved in our previous work.Therefore,a step to decrease CO2 concentration(called as de-CO2 step) is suggested to be set prior to the CO-SMET step in this work.It is proved that such combination of de-CO2 step and CO-SMET step is efficient to achieve a deep removal of CO to below 10 ppm with a high selectivity more than 50% in a wide reaction temperature range of 220—280℃over the catalyst Ni/ZrO2 without adding chlorine ions as promoter.The combined process has potential for practical application,at least in the large-scale power plant of PEMFC.
关键词: