PREPARATION OF SEMI-SOLID AlSi7Mg ALLOY SLURRY
来源期刊:Acta Metallurgica Sinica2008年第2期
论文作者:W.M. Mao Z.D. Zhao
Key words:Semi-solid; AlSi7Mg alloy; Primary α-Al; Pouring temperature; Weak electromagnetic stirring;
Abstract: In this article, semi-solid AlSi7Mg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the microstructure of the AlSi7Mg alloy slurry were studied. The results showed that the semi-solid AlSi7Mg alloy slurry, 127 mm in diameter, could be prepared by using the low superheat pouring and weak electromagnetic stirring technology and this new technology could save energy and make the pouring process convenient. When the liquid AlSi7Mg alloy was poured at 650°C or 630°C, the solidified microstructure of the AlSi7Mg alloy slurry, prepared by weak electromagnetic stirring, was remarkably improved when compared with that of the slurry prepared without stirring. The primary α-Al grains appeared rosette-like or spherical. When the pouring temperature was decreased, the shape of the primary α-Al grains gradually changed from dendritic-like grains to spherical grains. When the pouring temperature was appropriately increased, that is, raised to a certain superheat, the pouring processbecame easier and an ideal spherical microstructure of the AlSiTMg alloy slurry, prepared by weak electromagnetic stirring, could also be obtained. In this experiment,when the stirring power was 0.36 kW, the optimized pouring temperature parameter was 630°C. When the AISiTMg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring, the pouring temperature was 630°C. Increasing the stirring power appropriately could gain better spherical primary α-Al grains, but if the stirring power was increased to a certain value, the shape of the primary α-Al grains did not improve further. In this experiment, the optimized stirring power parameter was 0.36 kW.
W.M. Mao1,Z.D. Zhao1
(1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083,China)
Abstract:In this article, semi-solid AlSi7Mg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the microstructure of the AlSi7Mg alloy slurry were studied. The results showed that the semi-solid AlSi7Mg alloy slurry, 127 mm in diameter, could be prepared by using the low superheat pouring and weak electromagnetic stirring technology and this new technology could save energy and make the pouring process convenient. When the liquid AlSi7Mg alloy was poured at 650°C or 630°C, the solidified microstructure of the AlSi7Mg alloy slurry, prepared by weak electromagnetic stirring, was remarkably improved when compared with that of the slurry prepared without stirring. The primary α-Al grains appeared rosette-like or spherical. When the pouring temperature was decreased, the shape of the primary α-Al grains gradually changed from dendritic-like grains to spherical grains. When the pouring temperature was appropriately increased, that is, raised to a certain superheat, the pouring processbecame easier and an ideal spherical microstructure of the AlSiTMg alloy slurry, prepared by weak electromagnetic stirring, could also be obtained. In this experiment,when the stirring power was 0.36 kW, the optimized pouring temperature parameter was 630°C. When the AISiTMg alloy slurry was prepared by low superheat pouring and weak electromagnetic stirring, the pouring temperature was 630°C. Increasing the stirring power appropriately could gain better spherical primary α-Al grains, but if the stirring power was increased to a certain value, the shape of the primary α-Al grains did not improve further. In this experiment, the optimized stirring power parameter was 0.36 kW.
Key words:Semi-solid; AlSi7Mg alloy; Primary α-Al; Pouring temperature; Weak electromagnetic stirring;
【全文内容正在添加中】