简介概要

Antibacterial ability and cytocompatibility of Cu-incorporated Ni–Ti–O nanopores on NiTi alloy

来源期刊:Rare Metals2019年第6期

论文作者:Jia-Ming Zhang Yong-Hua Sun Ya Zhao Yan-Lian Liu Xiao-Hong Yao Bin Tang Rui-Qiang Hang

文章页码:552 - 560

摘    要:Nearly equiatomic nickel–titanium(NiTi) alloy is an ideal implant biomaterial because of its shape memory effect, superelasticity, low elastic modulus as well as other desirable properties.However, it is prone to infection because of its poor antibacterial ability.The present work incorporated Cu into Ni–Ti–O nanopores(NP–Cu) anodically grown on the NiTi alloy to enhance its antibacterial ability, which was realized through electrodeposition.Our results show that incorporation of Cu(0.78 at%–2.37 at%)has little influence on the NP diameter, length and morphology.The release level of Cu ions is in line with loadage which may be responsible for the improved antibacterial ability of the NiTi alloy to combat possible bacterial infection in vivo.Meanwhile, the NP–Cu shows better cytocompatibility and even can promote proliferation of bone marrow mesenchymal stem cells(BMSCs),up-regulate collagen secretion and extracellular matrix mineralization when compared with Cu-free sample.Better antibacterial ability and cytocompatibility of the NP–Cu render them to be promising when serving as NiTi implant coatings.

详情信息展示

Antibacterial ability and cytocompatibility of Cu-incorporated Ni–Ti–O nanopores on NiTi alloy

Jia-Ming Zhang,Yong-Hua Sun,Ya Zhao,Yan-Lian Liu,Xiao-Hong Yao,Bin Tang,Rui-Qiang Hang

摘 要:Nearly equiatomic nickel–titanium(NiTi) alloy is an ideal implant biomaterial because of its shape memory effect, superelasticity, low elastic modulus as well as other desirable properties.However, it is prone to infection because of its poor antibacterial ability.The present work incorporated Cu into Ni–Ti–O nanopores(NP–Cu) anodically grown on the NiTi alloy to enhance its antibacterial ability, which was realized through electrodeposition.Our results show that incorporation of Cu(0.78 at%–2.37 at%)has little influence on the NP diameter, length and morphology.The release level of Cu ions is in line with loadage which may be responsible for the improved antibacterial ability of the NiTi alloy to combat possible bacterial infection in vivo.Meanwhile, the NP–Cu shows better cytocompatibility and even can promote proliferation of bone marrow mesenchymal stem cells(BMSCs),up-regulate collagen secretion and extracellular matrix mineralization when compared with Cu-free sample.Better antibacterial ability and cytocompatibility of the NP–Cu render them to be promising when serving as NiTi implant coatings.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号