简介概要

Recovery of germanium from lignite by microorganism

来源期刊:Rare Metals2002年第3期

论文作者:ZHU Yun, GUO Yuxia, and GUO ShuxianDepartment of Metallurgy, Kunming University of Science and Technology, Kunming , China

文章页码:238 - 242

摘    要:<正>The recovery of Ge from lignite by microorganism includes two stages: (1) the breaking-down of Ge complex of humus in lignite into simple compounds assisted by microorganism; (2) the desorption of Ge compounds from the lignite. The recovery rate of Ge has been enhanced by 14% since the discovery of adsorption and desorption of Ge from coal. The effects of pH, leaching agents, and coal size on the recovery of Ge were experimentally investigated, and the optimized process parameters were obtained. The reaction heat of Ge adsorption and desorption in lignite was determined. It is about 23-53 kJ/mol, which reveals that the adsorption belongs to physical process. The recovery rate of Ge from lignite with direct microorganism leaching can reach about 85%, which is higher than that of 60% reported elsewhere. A potential process for leaching Ge in lignite was suggested.

详情信息展示

Recovery of germanium from lignite by microorganism

ZHU Yun, GUO Yuxia, and GUO ShuxianDepartment of Metallurgy, Kunming University of Science and Technology, Kunming 65009, China

摘 要:<正>The recovery of Ge from lignite by microorganism includes two stages: (1) the breaking-down of Ge complex of humus in lignite into simple compounds assisted by microorganism; (2) the desorption of Ge compounds from the lignite. The recovery rate of Ge has been enhanced by 14% since the discovery of adsorption and desorption of Ge from coal. The effects of pH, leaching agents, and coal size on the recovery of Ge were experimentally investigated, and the optimized process parameters were obtained. The reaction heat of Ge adsorption and desorption in lignite was determined. It is about 23-53 kJ/mol, which reveals that the adsorption belongs to physical process. The recovery rate of Ge from lignite with direct microorganism leaching can reach about 85%, which is higher than that of 60% reported elsewhere. A potential process for leaching Ge in lignite was suggested.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号