简介概要

Electrochemical behavior of gold and its associated minerals in alkaline thiourea solutions

来源期刊:International Journal of Minerals Metallurgy and Materials2018年第7期

论文作者:Wen-juan Li

文章页码:737 - 743

摘    要:Electrochemical measurements were conducted to study the electrochemical behavior of gold(Au) and its commonly associated minerals in alkaline thiourea solutions. The results indicated that without addition of any stabilizer, selective dissolution of Au from stibnite and pyrite was only possible at relatively low thiourea concentrations. As Na2SiO3 was added, pyrite started to become active and an oxidation peak appeared; the oxidation peaks of arsenopyrite and chalcocite appeared earlier than that of Au. The chalcocite peak shifted in the positive direction and the peak current increased. Stibnite did not show an oxidation peak and its current was nearly zero. Adding Na2SiO3 favored the selective dissolution of Au when its minerals were associated with chalcocite and stibnite. At p H 12, the Au anode dissolution peak current increased with stabilizer concentration. At 0.38 and 0.42 V and for Na2SiO3 concentration below 0.09 M, the current density continuously increased with Na2SiO3 concentration. The Na2SiO3 concentration had to be adequate to stabilize thiourea. When the potential was higher than 0.42 V, the surface of the Au electrode started to passivate. With an additional increase in potential, the presence of Na2SiO3 could not stop the inevitable decomposition of thiourea.

详情信息展示

Electrochemical behavior of gold and its associated minerals in alkaline thiourea solutions

Wen-juan Li1,2

2. School of Chemical & Environmental Engineering, China University of Mining & Technology

摘 要:Electrochemical measurements were conducted to study the electrochemical behavior of gold(Au) and its commonly associated minerals in alkaline thiourea solutions. The results indicated that without addition of any stabilizer, selective dissolution of Au from stibnite and pyrite was only possible at relatively low thiourea concentrations. As Na2SiO3 was added, pyrite started to become active and an oxidation peak appeared; the oxidation peaks of arsenopyrite and chalcocite appeared earlier than that of Au. The chalcocite peak shifted in the positive direction and the peak current increased. Stibnite did not show an oxidation peak and its current was nearly zero. Adding Na2SiO3 favored the selective dissolution of Au when its minerals were associated with chalcocite and stibnite. At p H 12, the Au anode dissolution peak current increased with stabilizer concentration. At 0.38 and 0.42 V and for Na2SiO3 concentration below 0.09 M, the current density continuously increased with Na2SiO3 concentration. The Na2SiO3 concentration had to be adequate to stabilize thiourea. When the potential was higher than 0.42 V, the surface of the Au electrode started to passivate. With an additional increase in potential, the presence of Na2SiO3 could not stop the inevitable decomposition of thiourea.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号