简介概要

In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第10期

论文作者:P.A.Morton H.C.Taylor L.E.Murr O.G.Delgado C.A.Terrazas R.B.Wicker

文章页码:98 - 107

摘    要:Laser-assisted gas nitriding of selective Ti-6Al-4V surfaces has been achieved during laser powder bed fusion fabrication by exchanging the argon build gas environment with nitrogen. Systematic variation of processing parameters allowed microdendritic Ti N surface coatings to be formed having thicknesses ranging from a few tens of microns to several hundred microns, with TiN dendrite microstructure volume fractions ranging from 0.6 to 0.75; and corresponding Vickers microindentation hardness values ranging from ~7.5 GPa–9.5 GPa. Embedded TiN hard layers ranging from 50 μm to 150 μm thick were also fabricated in the laser-beam additively manufactured Ti-6Al-4V alloy producing prototype, hybrid, planar composites having alternating, ductile Ti-6Al-4V layers with a hardness of ~4.5 GPa and a stiff, TiN layer with a hardness of ~8.5 GPa. The results demonstrate prospects for fabricating novel, additively manufactured components having selective, hard, wear and corrosion resistant coatings along with periodic,planar or complex metal matrix composite regimes exhibiting superior toughness and related mechanical properties.

详情信息展示

In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion

P.A.Morton1,2,H.C.Taylor1,3,L.E.Murr1,3,O.G.Delgado1,2,C.A.Terrazas1,2,R.B.Wicker1,2

1. W.M.Keck Center for 3D Innovation, The University of Texas at El Paso2. Department of Mechanical Engineering, The University of Texas at El Paso3. Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso

摘 要:Laser-assisted gas nitriding of selective Ti-6Al-4V surfaces has been achieved during laser powder bed fusion fabrication by exchanging the argon build gas environment with nitrogen. Systematic variation of processing parameters allowed microdendritic Ti N surface coatings to be formed having thicknesses ranging from a few tens of microns to several hundred microns, with TiN dendrite microstructure volume fractions ranging from 0.6 to 0.75; and corresponding Vickers microindentation hardness values ranging from ~7.5 GPa–9.5 GPa. Embedded TiN hard layers ranging from 50 μm to 150 μm thick were also fabricated in the laser-beam additively manufactured Ti-6Al-4V alloy producing prototype, hybrid, planar composites having alternating, ductile Ti-6Al-4V layers with a hardness of ~4.5 GPa and a stiff, TiN layer with a hardness of ~8.5 GPa. The results demonstrate prospects for fabricating novel, additively manufactured components having selective, hard, wear and corrosion resistant coatings along with periodic,planar or complex metal matrix composite regimes exhibiting superior toughness and related mechanical properties.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号