简介概要

Topography,structure,and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C

来源期刊:International Journal of Minerals Metallurgy and Materials2017年第5期

论文作者:Zhi-yuan Chen Liu-zhen Bian Li-jun Wang Zi-you Yu Hai-lei Zhao Fu-shen Li Kuo-chih Chou

文章页码:574 - 583

摘    要:The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere.The topography,properties,and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy(FESEM),temperature-programmed oxidation(TPO) technology,X-ray diffraction(XRD),and Raman spectroscopy.The deposited carbon is present in the form of a film at 400–450°C,as fibers at 500–600°C,and as particles at 650–800°C.In addition,the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature,whereas the intensity ratio between the D bands and the G band decreases.An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range(M-T range) and the corresponding kinetic mechanism changes.Correspondingly,the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2,D3,and D4 bands decrease to low limits in the M-T range.These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature.Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.

详情信息展示

Topography,structure,and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850°C

Zhi-yuan Chen1,Liu-zhen Bian1,Li-jun Wang1,2,Zi-you Yu1,Hai-lei Zhao3,Fu-shen Li3,Kuo-chih Chou1,2

1. State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing2. Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing3. School of Materials Science and Engineering,University of Science and Technology Beijing

摘 要:The carbon deposition behavior on nickel particles was observed within the temperature range from 400 to 800°C in a pure methane atmosphere.The topography,properties,and molecular structure of the deposited carbon were investigated using field-emission scanning electron microscopy(FESEM),temperature-programmed oxidation(TPO) technology,X-ray diffraction(XRD),and Raman spectroscopy.The deposited carbon is present in the form of a film at 400–450°C,as fibers at 500–600°C,and as particles at 650–800°C.In addition,the structure of the deposited carbon becomes more ordered at higher temperatures because both the TPO peak temperature of deposited carbon and the Raman shift of the G band increase with the increase in experimental temperature,whereas the intensity ratio between the D bands and the G band decreases.An interesting observation is that the carbon deposition rate is suppressed in the medium-temperature range(M-T range) and the corresponding kinetic mechanism changes.Correspondingly,the FWHM of the G and D1 bands in the Raman spectrum reaches a maximum and the intensities of the D2,D3,and D4 bands decrease to low limits in the M-T range.These results indicate that carbon structure parameters exhibit two different tendencies with respect to varying temperature.Both of the two group parameters change dramatically as a peak function with increasing reaction temperature within the M-T range.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号