Thermodynamics and technology of extracting gold from low-grade gold ore in system of NH4Cl-NH3-H2O

来源期刊:中国有色金属学报(英文版)2006年第1期

论文作者:巨少华 唐谟堂 杨声海

文章页码:203 - 208

Key words:gold; gold extraction; NH4Cl-NH3-H2O; hydrometallurgy; thermodynamics; ammonium chloride

Abstract:

Abstract: According to the principles of simultaneous chemical equilibrium and electronic charge neutrality, the thermodynamics of Au-NH4Cl-NH3-H2O system was studied by using the exponential computation method and through MATLAB programming, and the solid figure of potential-c(NH4Cl)-c(NH4OH) was drawn. The results show that when the sum concentration of Au+ and Au3+ is equal to 5×105 mol/L, φ(Au+/Au) is about -0.2 V; when the sum comes up to 0.5 mol/L, the value of φ(Au+/Au) increases to 0.2 V. In this case, φ(O2/OH) is as high as 0.7 V. This means that it is feasible to extract gold in this system. In addition, to predict the feasibility of reducing gold from the Au(I)-NH4Cl-NH3-H2O system with copper or zinc powder, the solid figures of potential-c(NH4Cl)-c(NH4OH) for both systems of Cu-NH4Cl-NH3-H2O and Zn-NH4Cl-NH3-H2O were also drawn. The results indicate that both copper and zinc powders can reduce Au+ into metal gold, and zinc powder can also reduce H2O into H2, while copper powder can not. The leaching results of a cuprous gold ore show that the extraction of gold can reach 80% in this system. The preliminary results of reduction with copper and zinc powders show that with deoxygenizing, the reduction effects are relatively good.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号