简介概要

Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第3期

论文作者:Xiaowei Liu Yong Liu Bin Jin Yang Lu Jian Lu

文章页码:224 - 230

摘    要:Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys’ mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of 10 μm(’coarse-grain sample’) and 5 μm(’fine-grain sample’), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample’ was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples’.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution.

详情信息展示

Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing

Xiaowei Liu1,Yong Liu1,2,Bin Jin2,Yang Lu1,3,Jian Lu1,3

1. Centre for Advanced Structural Materials(CASM), Department of Mechanical and Biomedical Engineering, City University of Hong Kong2. Key Laboratory of Near Net Forming of Jiangxi Province, Nanchang University3. Shenzhen Research Institute, City University of Hong Kong

摘 要:Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys’ mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of 10 μm(’coarse-grain sample’) and 5 μm(’fine-grain sample’), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample’ was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples’.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号