Microstructure evolution of Zn-8Cu-0.3Ti alloy during hot deformation

来源期刊:中国有色金属学报(英文版)2012年第7期

论文作者:许晓庆 李德富 郭胜利 邬小萍

文章页码:1606 - 1612

关键词:锌合金;动态再结晶;高温变形;复相组织

Key words:zinc alloy; dynamic recrystallization; high temperature deformation; polyphase alloy

摘    要:利用Gleeble-1500热力模拟试验机在温度230~380 ℃,应变速率0.01~10 s-1的条件下进行均匀化态Zn-8Cu-0.3Ti锌合金的热压缩变形实验,测定真应力—真应变曲线,利用OM、SEM和TEM对变形组织进行分析。结果表明:在变形过程中该合金发生了TiZn15相的球化、析出相的粗化和基体η相的动态再结晶,形成了(η+ε+TiZn15)复相组织。变形过程中TiZn15相的球化有助于粒子协同方式实现粒子激发形核,有利于基体动态再结晶的发生。随着压缩变形温度的升高,基体动态再结晶晶粒的尺寸先减小后增大;随着应变速率和应变量的增大,动态再结晶进行得更充分;形变促进Cu原子的扩散,导致析出相的粗化,析出相的钉扎作用使组织得到细化。

Abstract: The hot deformation behavior of homogenized zinc alloy was investigated through uniaxial compression test on a Gleeble-1500 thermal-mechanical simulator within a temperature range of 230-380 ℃ and a strain rate range of 0.01-10 s-1, the corresponding flow curves and their characters were determined and analyzed, and microstructures were studied by optical, SEM and TEM microscopy. The results indicated that the microstructure evolution of zinc alloy during hot deformation involves the spheroidization of the phase of TiZn15, coarsening of the precipitated phase and dynamic recrystallization (DRX) of the phase of matrix, leading to the formation of the polyphase (η+ε+TiZn15) structure. The spheroidization of the phase of TiZn15 during hot deformation was beneficial to the particle nucleation stimulated and then promoted to DRX of matrix. The dynamic recrystallization grain size of the matrix phase decreased firstly and then increased with elevating the temperature, and the degree of DRX became more complete when the strain rate and strain became larger. Hot deformation accelerated the diffusion of Cu atom, which resulted in the coarsening of the precipitated phase. Thus, the microstructure was refined owing to the pinning effect of the precipitated phase.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号