简介概要

Dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets

来源期刊:Journal of Rare Earths2019年第8期

论文作者:Longlong Xi Anhua Li Haibo Feng Min Tan Wei Sun Minggang Zhu Wei Li

文章页码:865 - 870

摘    要:In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)max and coercivity Hcj of Ce-Fe-B sintered magnet are improved from 6.76 to 9.13 MGOe by 35.1%,and from 1.44 to 1.67 kOe by 16.0%,respectively,via adding 5 wt% liquid phase alloy of Ce35.58Fe57.47Cu6 B0.95(at%).Compared with the magnet without Cerich alloy addition,the volume fraction of the grain-boundary phase with low melting point increases in the magnet with Ce-rich alloy additio n,which is be ne ficial to imp roving the microstructure and promoting the coercivity enhancement of the magnet.In the Ce-Fe-B magnet with Ce-rich alloy addition,Cu and Ce enrich in the grain boundaries of the magnet after annealing,therefore the as-annealed magnet has a higher coercivity than the as-sintered magnet.A distinct Fe-rich layer with the average thickness of 60 nm is found in the grain boundaries in the magnet without Ce-rich alloy addition,but it seems that Fe-rich phase disappears in the magnet with Ce-rich alloy addition.The present work suggests that the further improvement of coercivity in the Ce-Fe-B sintered magnets is expectable by designing the composition and structure of added liquid phase alloys.

详情信息展示

Dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets

Longlong Xi,Anhua Li,Haibo Feng,Min Tan,Wei Sun,Minggang Zhu,Wei Li

摘 要:In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)max and coercivity Hcj of Ce-Fe-B sintered magnet are improved from 6.76 to 9.13 MGOe by 35.1%,and from 1.44 to 1.67 kOe by 16.0%,respectively,via adding 5 wt% liquid phase alloy of Ce35.58Fe57.47Cu6 B0.95(at%).Compared with the magnet without Cerich alloy addition,the volume fraction of the grain-boundary phase with low melting point increases in the magnet with Ce-rich alloy additio n,which is be ne ficial to imp roving the microstructure and promoting the coercivity enhancement of the magnet.In the Ce-Fe-B magnet with Ce-rich alloy addition,Cu and Ce enrich in the grain boundaries of the magnet after annealing,therefore the as-annealed magnet has a higher coercivity than the as-sintered magnet.A distinct Fe-rich layer with the average thickness of 60 nm is found in the grain boundaries in the magnet without Ce-rich alloy addition,but it seems that Fe-rich phase disappears in the magnet with Ce-rich alloy addition.The present work suggests that the further improvement of coercivity in the Ce-Fe-B sintered magnets is expectable by designing the composition and structure of added liquid phase alloys.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号