简介概要

Quantitative analysis of microstructure evolution induced by temperature rise during(α+β) deformation of TA15 titanium alloy

来源期刊:Rare Metals2016年第3期

论文作者:Liang-Gang Guo Shuai Zhu He Yang Xiao-Guang Fan Fu-Long Chen

文章页码:223 - 229

摘    要:Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.

详情信息展示

Quantitative analysis of microstructure evolution induced by temperature rise during(α+β) deformation of TA15 titanium alloy

摘要:Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号