简介概要

Zinc phosphating of 6061-Al alloy using REN as additive

来源期刊:JOURNAL OF RARE EARTHS2008年第1期

论文作者:ZHANG Xiaolin ZHANG Mingming ZHANG Shenglin

Key words:Rare Earth Nitrate (REN); phosphate coating; aluminum alloy; accelerator; ,nucleation agent;

Abstract: Zinc phosphate coating formed on 6061-Al alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating solutions containing different concentrations of Rare Earth Nitrate (REN). REN, which acted as an accelerator in the phosphating solution, could catalyze the surface reaction and accelerate the phosphating process. REN mainly enabled the P in the phosphate coating to exist in the form of PO43- and promoted the hydrolysis of phosphatic acid in a liquid layer at the cathodes. This resulted in the evolution of H2 at the cathodes, which increased the local pH value and in turn drove the precipitation of the phosphate coating. Additionally, REN was adsorbed on the surface of the aluminum substrates to form a gel during the phosphating process. These gel particles were good crystal seeds, which helped to form phosphate crystal nuclei and possess the function of a nucleation agent that could decrease the phosphate crystal size. The corrosion resistance of the formed zinc phosphate coatings was improved.

详情信息展示

Zinc phosphating of 6061-Al alloy using REN as additive

ZHANG Xiaolin1,ZHANG Mingming2,ZHANG Shenglin2

(1.School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, China;
2.Chemistry & Environmental Science College, Henan Normal University, Xinxiang 453007, China)

Abstract:Zinc phosphate coating formed on 6061-Al alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating solutions containing different concentrations of Rare Earth Nitrate (REN). REN, which acted as an accelerator in the phosphating solution, could catalyze the surface reaction and accelerate the phosphating process. REN mainly enabled the P in the phosphate coating to exist in the form of PO43- and promoted the hydrolysis of phosphatic acid in a liquid layer at the cathodes. This resulted in the evolution of H2 at the cathodes, which increased the local pH value and in turn drove the precipitation of the phosphate coating. Additionally, REN was adsorbed on the surface of the aluminum substrates to form a gel during the phosphating process. These gel particles were good crystal seeds, which helped to form phosphate crystal nuclei and possess the function of a nucleation agent that could decrease the phosphate crystal size. The corrosion resistance of the formed zinc phosphate coatings was improved.

Key words:Rare Earth Nitrate (REN); phosphate coating; aluminum alloy; accelerator; ,nucleation agent;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号