简介概要

Numerical Analysis of Fiber Bragg Grating and Long Period Fiber Grating Undergoing Linear and Quadratic Temperature Change

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2009年第6期

论文作者:袁银权

文章页码:952 - 955

摘    要:The coupled-mode equations for fiber Bragg grating (FBG) and long period fiber grating (LPFG) undergoing linear and quadratic temperature change were given. The effects of temperature gradient and quadratic temperature change on the reflectivity spectrum of fiber Braggs grating and the transmission spectrum of long period fiber grating were investigated using the numerical simulation, and the dependence relationships of the central wavelength shift, the full-width-athalf-maximum, and the peak intensity upon temperature gradient were also obtained. These relationships may be used to design a novel fiber optical sensor which can simultaneously measure the temperature and temperature gradient.

详情信息展示

Numerical Analysis of Fiber Bragg Grating and Long Period Fiber Grating Undergoing Linear and Quadratic Temperature Change

袁银权

Key Laboratory of Fiber Optic Sensing Technology and Information Processing (Ministry of Education),Wuhan University of Technology

摘 要:The coupled-mode equations for fiber Bragg grating (FBG) and long period fiber grating (LPFG) undergoing linear and quadratic temperature change were given. The effects of temperature gradient and quadratic temperature change on the reflectivity spectrum of fiber Braggs grating and the transmission spectrum of long period fiber grating were investigated using the numerical simulation, and the dependence relationships of the central wavelength shift, the full-width-athalf-maximum, and the peak intensity upon temperature gradient were also obtained. These relationships may be used to design a novel fiber optical sensor which can simultaneously measure the temperature and temperature gradient.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号