简介概要

Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration,osteoinduction and vascularization: An overview

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第2期

论文作者:Lawrence E.Murr

文章页码:231 - 241

摘    要:Additive manufacturing of porous, open-cellular metal or alloy implants, fabricated by laser or electron beam melting of a powder bed, is briefly reviewed in relation to optimizing biomechanical compatibility by assuring elastic(Young’s) modulus matching of proximate bone, along with corresponding pore sizes assuring osseointegration and vasculature development and migration. In addition, associated, requisite compressive and fatigue strengths for such implants are described. Strategies for optimizing osteoblast(bone cell) development and osteoinduction as well as vascularization of tissue in 3 D scaffolds and tissue engineering constructs for bone repair are reviewed in relation to the biology of osteogenesis and neovascularization in bone, and the role of associated growth factors, bone morphogenic proteins, signaling molecules and the like. Prospects for infusing hydrogel/collagen matrices containing these cellular and protein components or surgically extracted intramedullary(bone marrow) concentrate/aspirate containing these biological and cell components into porous implants are discussed, as strategies for creating living implants, which over the long term would act as metal or alloy scaffolds.

详情信息展示

Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration,osteoinduction and vascularization: An overview

Lawrence E.Murr

摘 要:Additive manufacturing of porous, open-cellular metal or alloy implants, fabricated by laser or electron beam melting of a powder bed, is briefly reviewed in relation to optimizing biomechanical compatibility by assuring elastic(Young’s) modulus matching of proximate bone, along with corresponding pore sizes assuring osseointegration and vasculature development and migration. In addition, associated, requisite compressive and fatigue strengths for such implants are described. Strategies for optimizing osteoblast(bone cell) development and osteoinduction as well as vascularization of tissue in 3 D scaffolds and tissue engineering constructs for bone repair are reviewed in relation to the biology of osteogenesis and neovascularization in bone, and the role of associated growth factors, bone morphogenic proteins, signaling molecules and the like. Prospects for infusing hydrogel/collagen matrices containing these cellular and protein components or surgically extracted intramedullary(bone marrow) concentrate/aspirate containing these biological and cell components into porous implants are discussed, as strategies for creating living implants, which over the long term would act as metal or alloy scaffolds.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号