ÖйúÓÐÉ«½ðÊôѧ±¨

DOI: 10.11817/j.ysxb.1004.0609.2021-36524

Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð΢¹Û×éÖ¯ºÍÁ¦Ñ§ÐÔÄÜ

ÅíÓÀ¸Õ1, 2, 3, 4£¬¶Å־ΰ1, 2, 3, 4£¬ÀîÓÀ¾ü5£¬Àî  æÃ1, 2, 3, 4£¬º«Ð¡ÀÚ1, 2, 4£¬ÂíÃùÁú5£¬ÅÓ  ï£1, 2, 3, 4£¬ÐìÔÆÅà1, 2, 4£¬Àî  ´Ï1, 2, 4£¬Ô¬¼Òΰ5£¬Ê¯¹úÁº5

(1. ÓÐÑпƼ¼¼¯ÍÅÓÐÏÞ¹«Ë¾¹ú¼ÒÓÐÉ«½ðÊô¼°µç×Ó²ÄÁÏ·ÖÎö²âÊÔÖÐÐÄ£¬±±¾© 100088£»

2. ¹úºÏͨÓòâÊÔÆÀ¼ÛÈÏÖ¤¹É·Ý¹«Ë¾£¬±±¾© 101407£»

3. ±±¾©ÓÐÉ«½ðÊôÑо¿×ÜÔº£¬±±¾© 100088£»

4. ¹ú±ê(±±¾©)¼ìÑéÈÏÖ¤ÓÐÏÞ¹«Ë¾£¬±±¾© 101407£»

5. ÓÐÑй¤³Ì¼¼ÊõÑо¿ÔºÓÐÏÞ¹«Ë¾ ÓÐÉ«½ðÊô²ÄÁÏÖƱ¸¼Ó¹¤¹ú¼ÒÖصãʵÑéÊÒ£¬±±¾© 101407)

Õª Òª£º

²ÉÓÃɨÃèµç×ÓÏÔ΢¾µ¡¢µç×Ó±³É¢ÉäÑÜÉ䡢͸Éäµç×ÓÏÔ΢¾µ¡¢¸ß½Ç¶È»·Ðΰµ³¡-ɨÃè͸É䣬·ÖÎöÁËMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2, ÖÊÁ¿·ÖÊý£¬%)¼·Ñ¹Ì¬ºÏ½ð΢¹Û×éÖ¯½á¹¹ºÍÁ¦Ñ§ÐÔÄÜ£¬Ö¼ÔÚ̽Ë÷Zn¶ÔÓںϽðÐÔÄÜÓ°ÏìµÄ΢¹Û»úÖÆ¡£½á¹û±íÃ÷£ºÔÚMg-7Gd-5Y-1Nd-0.5ZrºÏ½ðÖÐÌí¼ÓZnÔªËØ£¬²»½öÐγÉLPSO½á¹¹£¬Ò²´Ù½øÁËMg5(RE, Zn)¿ÅÁ£µÄÎö³ö£¬²¢ÓëZrÐγÉZn-ZrÏà¡£LPSO½á¹¹²»½öÄÜ×è°­¾§Á£³¤´ó£¬Ï¸»¯¾§Á££»Ò²Äܹ»×è°­¶¯Ì¬Ôٽᾧ£¬´Ó¶øÐγɶ¯Ì¬Ôٽᾧ¾§Á£ºÍ±äÐξ§Á£¹²´æµÄË«Ä£½á¹¹£¬¶¯Ì¬Ôٽᾧ¾§Á£Îª//EDÖ¯¹¹£¬±äÐξ§Á£Îª//EDÖ¯¹¹¡£Î¢Ã×¼¶´ó³ß´çMg5(RE, Zn)¿ÅÁ£»áµ¼ÖÂÓ¦Á¦¼¯ÖУ¬ÒýÆðÁÑÎƵÄÃÈÉú£¬½µµÍºÏ½ðµÄËÜÐÔ£»¾ùÔÈ·Ö²¼µÄÑÇ΢Ã×¼¶Mg5(RE, Zn)¿ÅÁ£ÆðµÚ¶þÏàÇ¿»¯×÷Ó㬲¢Äܶ¤Ôú¾§½ç£¬×è°­¾§Á£³¤´ó¡£¶Ô±È3ÖÖ¼·Ñ¹Ì¬ºÏ½ð£¬Mg-7Gd-5Y-1Nd-2Zn-0.5ZrºÏ½ð»ñµÃÁË×îÓŵÄÁ¦Ñ§ÐÔÄÜ£¬Æ俹À­Ç¿¶È¡¢Çü·þÇ¿¶ÈºÍÉ쳤ÂÊ·Ö±ðΪ365 MPa¡¢276 MPaºÍ17.5%¡£

¹Ø¼ü´Ê£º

þºÏ½ð£»¼·Ñ¹£»³¤³Ì¶Ñ¶âÓÐÐò(LPSO)½á¹¹£»HAADF-STEM£»Á¦Ñ§ÐÔÄÜ£»

ÎÄÕ±àºÅ£º1004-0609(2021)-01-0009-12¡¡¡¡     ÖÐͼ·ÖÀàºÅ£ºTG146.2¡¡¡¡     ÎÄÏ×±êÖ¾Â룺A

ÒýÎĸñʽ£ºÅíÓÀ¸Õ, ¶Å־ΰ, ÀîÓÀ¾ü, µÈ. Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð΢¹Û×éÖ¯ºÍÁ¦Ñ§ÐÔÄÜ[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2021, 31(1): 9-21. DOI: 10.11817/j.ysxb.1004.0609.2021-36524

PENG Yong-gang, DU Zhi-wei, LI Yong-jun, et al. Microstructures and mechanical properties of extruded Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2) alloys[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 9-21. DOI: 10.11817/j.ysxb.1004.0609.2021-36524

þºÏ½ðÊÇĿǰʵ¼ÊÓ¦ÓÃ×îÇáµÄ½ðÊô½á¹¹²ÄÁÏ£¬¹ã·ºÓ¦ÓÃÓÚº½¿Õº½Ìì¡¢½»Í¨ÔËÊä¡¢µç×Ó²úÆ·µÈÁìÓò[1-4]¡£µ«Ã¾ºÏ½ðÆÕ±é´æÔÚÇ¿¶ÈµÍ£¬Ä͸¯Ê´ÐÔÄܲîµÈÎÊÌ⣬¼«´óµÄÏÞÖÆÁËþºÏ½ðµÄÓ¦Óá£Ï¡ÍÁ(Rare earth, RE)ÔªËØÔÚþºÏ½ðÖоßÓÐÏÔÖøµÄ¹ÌÈÜÇ¿»¯ºÍʱЧǿ»¯×÷Ó㬱íÏÖ³öÓÅÒìµÄÊÒκ͸ßÎÂÁ¦Ñ§ÐÔÄÜÒÔ¼°Á¼ºÃµÄÄÍÈȺÍÄÍÊ´ÐÔÄÜ[5-7]¡£ÆäÖУ¬Mg-Gd-Y-ZrϵÁкϽðÊǽüЩÄêµÄÑо¿Èȵã[8-10]¡£ÔÚMg-Gd¶þÔªºÏ½ðÖÐÌí¼ÓYÄܽµµÍGdÔÚþ»ùÌåÖеĹÌÈܶȣ¬Í¬Ê±ÄÜÌá¸ßºÏ½ðµÄʱЧӲ»¯Ð§¹û£¬Ìá¸ßºÏ½ðµÄÐÔÄÜ[10]¡£

ÔÚMg-REºÏ½ðÖÐÌí¼ÓZnÔªËØ£¬Ðγɳ¤³Ì¶Ñ¶âÓÐÐò(Long period stacking ordered£¬LPSO)½á¹¹£¬±íÏÖ³öÓÅÒìµÄÊÒκ͸ßÎÂÇ¿¶È¡¢ÓÅÁ¼µÄÉ쳤ÂʺͽϸߵÄÓ¦±äËÙÂʳ¬ËÜÐÔ£¬À©Õ¹Ã¾ºÏ½ðµÄÓ¦Ó÷¶Î§[11-16]¡£

LPSO½á¹¹µÄÀàÐÍ¡¢ÐÎò¡¢ÊýÁ¿¡¢·Ö²¼µÈÓëºÏ½ðµÄ³É·Ö¡¢ÈÈ´¦ÀíÖƶȼ°¼Ó¹¤¹¤ÒÕµÈÓйØ[17-23]¡£¾ÝÎÄÏ×±¨µÀ[17-19]£¬ÔÚMg-RE-ZnºÏ½ðÖУ¬¸ù¾ÝÆä¶Ñ¶âÐòÁеIJ»Í¬£¬ÓÐ4ÖÖ³£¼ûµÄLPSO½á¹¹£º10H¡¢18R¡¢14HºÍ24R¡£LPSO½á¹¹Ö÷ÒªÓÐ3ÖÖ²»Í¬µÄÐÎò£º·Ö²¼ÔÚ¾§½ç´¦²»¹æÔòÐÎ×´µÄLPSO½á¹¹¡¢·Ö²¼ÓÚ¾§Á£ÄÚ²¿µÄƬ²ã×´LPSO½á¹¹ºÍÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é(Ò²±»ÈÏΪÊDzã´í(Stacking faults, SFs))[20-24]¡£Ò»°ãÈÏΪLPSO½á¹¹ÄÜÌá¸ßºÏ½ðµÄÉ쳤ÂÊ¡£HONMAµÈ[12]ÔÚMg-Gd-Y-ZrºÏ½ðÖÐÌí¼ÓZnÔªËØ£¬ºÏ½ðÇ¿¶ÈÉÔÓнµµÍ£¬µ«¼«´óµÄÌá¸ßÁËÉ쳤ÂÊ¡£µ«²»Í¬ÐÎòµÄLPSO½á¹¹¶ÔºÏ½ðÁ¦Ñ§ÐÔÄܵÄÓ°ÏìÈÔÔÚÌÖÂÛÖС£²»¹æÔò¿é×´LPSO½á¹¹¶ÔÁ¦Ñ§µÄÓ°Ïì²»Ã÷ÏÔ£¬SFsÄܽµµÍºÏ½ðµÄÉ쳤ÂÊ[22]¡£XUµÈ[23]ÈÏΪº¬ÖÂÃÜSFsµÄºÏ½ðÓ뺬Ƭ²ã×´LPSO½á¹¹µÄºÏ½ðÏà±È£¬¾ßÓиü¸ßµÄÇ¿¶È£¬µ«ÑÓÐԽϵ͡£µ«LIµÈ[25]µÄ½á¹û±íÃ÷£¬SFsÄܹ»¼«´óµÄÌá¸ßºÏ½ðµÄÉ쳤Âʶø²»Ó°ÏìÇ¿¶È¡£

ÔÚMg-Gd-Y-ZrºÏ½ðÌí¼ÓNdÔªËØ£¬½«»áÏÔÖøËõ¶ÌºÏ½ð´ïµ½·åֵʱЧµÄʱ¼ä£¬²¢Ôö¼Ó·åֵʱЧµÄÓ²¶È[26]¡£YUµÈ[27]Ñо¿ÁËZnºÍNd¶ÔMg-Gd-Y-ZrºÏ½ðÁ¦Ñ§ÐÔÄܺÍ΢¹Û½á¹¹µÄÓ°Ï죬ZnÌí¼ÓÐγÉLPSO½á¹¹Ï࣬Ìá¸ßÁ˺ϽðµÄÁ¦Ñ§ÐÔÄÜ£»Nd´Ù½øÁËMg5REÏàµÄÎö³ö£¬½µµÍÁ˺ϽðµÄÁ¦Ñ§ÐÔÄÜ¡£ÁõΰµÈ[28]µÄÑо¿±íÃ÷£¬ÔÚMg-Gd-Y-Zn-ZrºÏ½ðÖÐÌí¼ÓNdÔªËØ£¬ÏÔÖøËõ¶ÌºÏ½ð´ïµ½Ê±Ð§·åÖµµÄʱ¼ä£¬ÇÒ¼«´óµÄÌá¸ßºÏ½ðµÄÈÈÎȶ¨ÐÔ¡£

±¾ÎÄÔÚ¿ÎÌâ×éEW75ºÏ½ð[29-30]µÄ»ù´¡ÉÏ£¬Ìí¼ÓZnÔªËØ£¬Ñо¿3ÖÖMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2, ÖÊÁ¿·ÖÊý£¬%)¼·Ñ¹Ì¬ºÏ½ð΢¹Û×éÖ¯½á¹¹ºÍÁ¦Ñ§ÐÔÄÜ£¬Ö¼ÔÚ̽Ë÷Zn¶ÔÓںϽðÐÔÄÜÓ°ÏìµÄ΢¹Û»úÖÆ£¬Îª¸ßÇ¿¸ßÈÍþºÏ½ðµÄÑÐÖÆÌṩһÖÖ˼·¡£

1  ʵÑé

3ÖÖMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2, ÖÊÁ¿·ÖÊý£¬%)ºÏ½ð(ÏÂÎÄ·Ö±ð¼ÇΪ0Zn¡¢1ZnºÍ2ZnºÏ½ð)¾ùÒÔ´¿Mg¡¢´¿Gd¡¢´¿ZnÓëMg-30%Y(ÖÊÁ¿·ÖÊý)¡¢Mg-30%Nd(ÖÊÁ¿·ÖÊý)¼°Mg-30%Zr(ÖÊÁ¿·ÖÊý)ÖмäºÏ½ðΪԭÁÏ£¬²ÉÓõç×è¯ÈÛÁ¶¡¢ÖØÁ¦ÖýÔ죬±£»¤ÆøÌåΪë²Æø+ËÄ·úÒÒÍé(ë²ÆøºÍËÄ·úÒÒÍéµÄÌå»ý±ÈΪ4:1)»ìºÏÆøÌ壬×îÖյõ½µÄÖý¶§³ß´çΪd 120 mm¡Á300 mm¡£Öý̬ºÏ½ð¾­515 ¡æ¡¢48 h¾ùÔÈ»¯ÈÈ´¦Àíºó£¬Ëæ¯ÀäÖÁ480 ¡æ±£ÎÂ8 hºóÁ¢¼´¼·Ñ¹£»Ä£¾ßζÈ480 ¡æ£¬¼·Ñ¹Í²Î¶È450 ¡æ£¬¼·Ñ¹±È20:1¡£

²ÉÓÃJSM-7900FÐͳ¡·¢ÉäɨÃèµç×ÓÏÔ΢¾µ(SEM)¹Û²ìºÏ½ðÑùÆ·µÄ΢¹Û×éÖ¯ÒÔ¼°À­Éì¶Ï¿ÚÐÎò½øÐй۲죻ÀûÓÃÆ丽¼þÄÜÆ×ÒÇ(EDS)·ÖÎöÏàµÄ³É·Ö£¬²¢ÀûÓõç×Ó±³É¢ÉäÑÜÉä¼¼Êõ(EBSD)¶ÔºÏ½ðÑùÆ·µÄ¾§Á£³ß´çºÍ΢ÇøÖ¯¹¹½øÐзÖÎö¡£Îª±£Ö¤Êý¾Ý±ê¶¨µÄ¿ÉÐŶÈÔÚ90%ÒÔÉÏ£¬ÖÃÐÅÖ¸Êý(Confidential index, CI) CI£¾0.1¡£²ÉÓÃTecnai G2 F20-TWINÐÍÈȳ¡·¢Éä͸Éäµç×ÓÏÔ΢¾µ(TEM)¶ÔºÏ½ðÖеĵڶþÏàÐÎòºÍ½á¹¹½øÐзÖÎö£¬²¢ÀûÓÃÆ丽´øµÄEDS·ÖÎöÏàµÄ³É·Ö¡£EBSDÖÆÑù£ºµç½âҺΪ20%ÏõËáÒÒ´¼ÈÜÒº(Ìå»ý·ÖÊý)£¬µçѹ20 V£¬Òºµª½µÎÂÖÁ0 ¡æ×óÓÒ¡£TEMÖÆÑù£ºÊ¹ÓÃÂýËÙ¾âDUDILER½«ÑùÆ·Çгɺñ¶È1 mm×óÓҵı¡Æ¬£¬È»ºóÓÃɰֽĥÖÁ50 ¦Ìm£¬È»ºó²ÉÓÃGatan PIPS 695Àë×Ó¼õ±¡ÒǽøÐмõ±¡£¬²ÉÓÃÒºµªÀäÈ´£¬Î¶ÈΪ-120 ¡æ¡£

2  ½á¹ûÓë·ÖÎö

2.1  ºÏ½ð×éÖ¯ÓëÏà½á¹¹·ÖÎö

ͼ1ËùʾΪMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðµÄ±³É¢Éäµç×ÓÏñ(BSE)£¬3ÖֺϽðÖеĵڶþÏàµÄÀàÐÍ¡¢ÐÎò¡¢³ß´çºÍ·Ö²¼µÈËæ×ÅZnº¬Á¿µÄ²»Í¬ÓнϴóµÄ²î±ð¡£0ZnºÏ½ðÖгöÏÖÁËƽÐм·Ñ¹·½ÏòµÄ¼·Ñ¹Á÷Ïߣ¬ÔÚ¼·Ñ¹Á÷ÏßÖзֲ¼×ÅÐí¶àµÚ¶þÏà¿ÅÁ£(¼ûͼ1(a))£»¾Ö²¿·Å´ó£¬Ö÷ÒªÓз½¿é×´µÄµÚ¶þÏà(¼ûͼ1(b))ºÍÔ²ÐοÅÁ£(¼ûͼ1(c))¡£EDS·ÖÎö±íÃ÷£º·½¿éÏàAµÄ³É·ÖΪ55.78Mg-9.47Gd-34.75Y(Ħ¶û·ÖÊý£¬%)£¬Îª¸»REÏࣻԲÐοÅÁ£BµÄ³É·ÖΪ78.02Mg- 21.98Zr(Ħ¶û·ÖÊý£¬%)£¬Îª¸»Zr¿ÅÁ£¡£ÔÚ1ZnºÍ2ZnºÏ½ðÖÐÒ²¹Û²ìµ½Á˸»REÏà(¼ûͼ1(d)ºÍ(g)ÖкÚɫԲȦËùʾ)¡£¸»REÏàÖУ¬REÔªËØΪGd/Y£¬Ò»°ãΪ·½¿é×´ÐÎò£¬FCC½á¹¹£¬¾§¸ñ²ÎÊýa=0.53 nm[31]¡£ZrÔÚþºÏ½ðÖеÄÈܽâ¶ÈºÜµÍ£¬Ò»°ã×öϸ»¯¼Á£¬Æðϸ»¯¾§Á£µÄ×÷ÓÃ[26, 32-33]¡£

1ZnºÏ½ðÖгöÏÖÁ˸üΪÏÔÖøµÄƽÐм·Ñ¹·½ÏòµÄ¼·Ñ¹Á÷Ïߣ¬ÔÚÕâЩ¼·Ñ¹Á÷ÏßÖзֲ¼×ÅÐí¶à³ß´ç¸ü´óµÄµÚ¶þÏà¿ÅÁ£(¼ûͼ1(d))£¬»¹ÓÐÐí¶àÆÆËéÁËС¿ÅÁ£(¼ûͼ1(e))£¬³ß´çΪ¼¸¸ö΢Ã×µ½Ê®¼¸¸ö΢Ã×£¬EDS·ÖÎö½á¹û±íÃ÷ÕâЩ¿ÅÁ£¾ùΪMg5(RE, Zn)¡£Ó¦Á¦ÔÚ´ó³ß´çµÄMg5(RE, Zn)¿ÅÁ£¸½½ü¼¯ÖУ¬ÒýÆðÁÑÎƵÄÃÈÉú£¬ÎªÁÑÎÆÔÚ¾§½çµÄÀ©Õ¹Ìṩ·¾¶£¬µ¼ÖºϽðµÄËÜÐÔ½µµÍ¡£Í¼1(d)ÖУ¬¹Û²ìµ½Æ¬²ã×´µÄLPSO½á¹¹(°×É«¼ýÍ·)£¬Æ¬²ã×´µÄLPSO½á¹¹Æ½ÐÐÓÚ¼·Ñ¹·½Ïò£¬ÔÚ¼·Ñ¹±äÐιý³ÌÖÐͨ¹ýÍäÇúÀ´Ð­µ÷±äÐΡ£´ËÍ⣬1ZnºÏ½ðÖл¹¹Û²ìµ½Ñؼ·Ñ¹·½Ïò·Ö²¼µÄZn-ZrÏà(¼ûͼ1(f))¡£Zn-ZrÏàµÄÐγɽµµÍÁ˦Á-Mg»ùÌåÖеÄZnµÄº¬Á¿£¬ÒÖÖÆLPSO½á¹¹µÄÐγɡ£Í¬Ê±£¬´Ù½ø¶¯Ì¬Ôٽᾧ(DRX)£¬×è°­¾§Á£³¤´ó£¬Ï¸»¯¾§Á£[34]¡£

ͼ1  Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðµÄ΢¹Û×éÖ¯(BSEÏñ)

Fig. 1  Microstructures (BSE images) of Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2) extruded alloys

2ZnºÏ½ðÖгöÏÖÁËƽÐм·Ñ¹·½ÏòµÄ¼·Ñ¹Á÷Ïߣ¬²»¹æÔòÐÎ×´µÄLPSO½á¹¹¡¢Æ¬²ã×´µÄLPSO½á¹¹¾ùÑØ׿·Ñ¹·½ÏòÀ­³¤£¬²¢Æ½ÐÐÓÚ¼·Ñ¹·½Ïò(¼ûͼ1(g))¡£ÔÚͼ1(g)~(i)Öй۲쵽´óÁ¿µÄÑÇ΢Ã×¼¶µÄϸС¿ÅÁ££¬ÇÒÔÚƬ²ã×´µÄLPSO½á¹¹ÖÜΧ³öÏÖÁËÎÞÎö³öÇø£¬¸ù¾Ýͼ4µÄTEM·ÖÎö£¬ÑÇ΢Ã×¼¶µÄϸС¿ÅÁ£ÎªMg5(RE, Zn)¿ÅÁ££¬ÓÚ¾§Äں;§½ç¾ùÓзֲ¼¡£´ËÍ⣬2ZnºÏ½ðÒ²¹Û²ìµ½ÁËZn-ZrÏà(ͼ1(g)ºÚÉ«ÍÖÔ²ÖÐ)£¬Æä·Å´óÈçͼ1(i)Ëùʾ¡£

ͼ2ËùʾΪMg-7Gd-5Y-1Nd-0.5Zr¼·Ñ¹Ì¬ºÏ½ðµÄHAADF-STEMÏñºÍÏàӦѡÇøµç×ÓÑÜÉä(SAED)Æס£Í¼2(a)Ϊ0ZnºÏ½ðÑØÑØ´øÖá¹Û²ìµÄHAADF-STEMÏñ£¬ÆäÏàÓ¦SAEDÆ×Èçͼ2(b)Ëùʾ£¬³ý¦Á-Mg»ùÌåµÄÑÜÉä°ßµãÍâ²¢ÎÞÆäËûÑÜÉä°ßµã£¬±íÃ÷²¢Ã»ÓÐϸСµÄÎö³öÏàÎö³ö¡£Í¼2(a)Öй۲쵽´óÁ¿µÄλ´íÏߣ¬´ó²¿·Öλ´í¹ì¼£Æ½ÐÐÓÚ(0001)¦Á»ùÃæ¡£

ͼ2  Mg-7Gd-5Y-1Nd-0.5Zr¼·Ñ¹Ì¬ºÏ½ðµÄHAADF-STEMÏñºÍÏàÓ¦µÄSAEDÆ×

Fig. 2  HAADF-STEM image and corresponding SAED pattern of Mg-7Gd-5Y-1Nd-0.5Zr extruded alloy

ͼ3  Mg-7Gd-5Y-1Nd-1Zn-0.5Zr¼·Ñ¹Ì¬ºÏ½ðµÄHAADF-STEMÏñºÍÏàÓ¦µÄSAEDÆ×

Fig. 3  HAADF-STEM images and corresponding SAED patterns of Mg-7Gd-5Y-1Nd-1Zn-0.5Zr extruded alloy

ͼ3ËùʾΪMg-7Gd-5Y-1Nd-1Zn-0.5Zr¼·Ñ¹Ì¬ºÏ½ðµÄHAADF-STEMÏñºÍÏàÓ¦SAEDÆס£Èçͼ3(a) Ëùʾ£¬ÔÚ¾§ÄÚÑØ×Å(0001)¦Á·Ö²¼×ÅÖÂÃÜϸСµÄÕë×´½á¹¹£¬ÏàÓ¦µÄSAEDÆ×Èçͼ3(a)ÓÒÉϽÇËùʾ£¬ÔÚÖ÷ÑÜÉä°ßµã¼ä³öÏÖâÏߣ¬±íÃ÷ÕâЩÕë×´½á¹¹ÎªÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é[20, 23]£¬ÔÚÈýάÉÏΪƬ²ã×´¡£Í¼3(b)Ϊ¶Ì°ô×´½á¹¹ÑØ´øÖá¹Û²ìµÄHAADF-STEMÏñ£¬ÓÒÉϽDzåͼΪÏàÓ¦µÄSAEDÆ×ͼ£¬ÔÚ(0000)¦ÁºÍ(0002)¦ÁÖ®¼äÓÐÊ®Èý¸öÑÜÉä°ßµã£¬±íÃ÷ÆäΪ14H-LPSO½á¹¹¡£ÕâЩ¶Ì°ô×´µÄLPSO½á¹¹ÊÇƬ²ã×´µÄLPSO½á¹¹ÔÚ¼·Ñ¹¹ý³Ì¶ÏÁÑÐγɵġ£Í¼3(c)ΪMg5(RE, Zn)¿ÅÁ£µÄHAADF-STEMÏñ£¬ÆäEDSµÄ·ÖÎö½á¹ûΪ82.38Mg-7.09Gd-5.26Y-2.88Nd-2.38Zn (Ħ¶û·ÖÊý£¬%)£¬ÓÒÉϽDzåͼΪÏàÓ¦µÄSAEDÆ×ͼ£¬Mg5(RE, Zn)ÏàΪFCC½á¹¹£¬¾§¸ñ²ÎÊýΪa=2.24 nm¡£Í¼3(d)ΪZn-ZrÏàµÄHAADF-STEMÏñ£¬³Ê¶Ì°ô×´£¬ÆäEDSµÄ·ÖÎö½á¹ûΪ41.50Mg-18.89Zn-39.62Zr(Ħ¶û·ÖÊý£¬%)¡£

ͼ4ËùʾΪMg-7Gd-5Y-1Nd-2Zn-0.5Zr¼·Ñ¹Ì¬ºÏ½ðµÄHAADF-STEMÏñºÍSAEDÆס£Í¼4(a)ÑØ´øÖá¹Û²ìµÄHAADF-STEMÏñ£¬ÔÚ¾§ÄÚÑØ×Å(0001)¦Á·Ö²¼×Å´óÁ¿Ï¸Ð¡Æ¬²ã×´ÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é£¬ÔÚ¾§Äں;§½ç¾ùÔÈ·Ö²¼×ÅÑÇ΢Ã×¼¶µÄµÚ¶þÏà¿ÅÁ£¡£Í¼4(b)ËùʾΪͼ4(a)ÏàÓ¦µÄSAEDÆ×£¬ÔÚÖ÷ÑÜÉä°ßµã¼ä³öÏÖâÏߣ¬ÎªÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é£¬Æä·Å´óͼÈçͼ4(d)Ëùʾ¡£Í¼4(a)ÖеڶþÏà¿ÅÁ£µÄEDS·ÖÎö½á¹ûΪ86.00Mg-6.16Gd-3.93Y-2.67Nd-1.24Zn (Ħ¶û·ÖÊý£¬%)£¬ÏàÓ¦µÄSAEDÆ×Èçͼ4(c)Ëùʾ£¬±íÃ÷ÕâЩµÚ¶þÏà¿ÅÁ£ÎªMg5(RE, Zn)Ïà¡£´óÁ¿¾ùÔÈ·Ö²¼µÄMg5(RE, Zn)¿ÅÁ£ÄÜÆðµ½µÚ¶þÏàÇ¿»¯µÄ×÷Óã¬Ìá¸ßºÏ½ðµÄÇ¿¶È¡£Í¬Ê±£¬¾§½çÉϵÄMg5(RE, Zn)Äܹ»·¢»Ó¶¤Ôú¾§½çµÄ×÷Óã¬×è°­¾§Á£³¤´ó¡£Í¼4(e)ËùʾΪƬ²ã×´LPSO½á¹¹ÑØ´øÖá¹Û²ìµÄHAADF-STEMÏñ£¬ÓÒÉϽDzåͼΪLPSO½á¹¹ÏàÓ¦µÄSAEDÆ×£¬Îª14H-LPSO½á¹¹¡£LPSO½á¹¹Í¨¹ýÍäÇú£¬Å¤ÕÛʵÏÖЭµ÷±äÐΣ¬Å¤ÕÛ±äÐεĵäÐÍÐÎòÈçͼ4(f)Ëùʾ¡£ÔÚ´ó±äÐÎÁ¿µÄÌõ¼þÏ£¬LPSO½á¹¹ÄÑÒÔͨ¹ýÍäÇú£¬Å¤ÕÛʵÏÖЭµ÷±äÐΣ¬»á·¢Éú¶ÏÁÑ(ͼ4(e)ÖкÚÉ«ÐéÏß¼ýÍ·Ëùʾ)£¬Æä·Å´óµÄµäÐÍÐÎòÈçͼ4(g)Ëùʾ£¬±È½ÏºñµÄƬ²ã×´LPSO½á¹¹¶ÏÁѵĽӿڴ¦³öÏÖ´óÁ¿Ë¿×´µÄLPSO½á¹¹ÎÕâÓëLPSO½á¹¹ÑØ[0001]¦ÁÖÜÆÚÅÅÁÐÓйء£Í¼4(g)Öа×É«¼ýÍ·ËùʾΪƬ²ã×´LPSO½á¹¹ÔÚ¼·Ñ¹¹ý³ÌÖжÏÁÑÐγɵÄСƬ¶Î¡£

ͼ4  Mg-7Gd-5Y-1Nd-2Zn-0.5Zr¼·Ñ¹Ì¬ºÏ½ðµÄHAADF-STEMÏñºÍSAEDÆ×

Fig. 4  HAADF-STEM images and corresponding SAED patterns of Mg-7Gd-5Y-1Nd-2Zn-0.5Zr extruded alloy

±È½Ï3ÖֺϽð¼·Ñ¹Ì¬µÄ΢¹Û×éÖ¯¿ÉÒÔ·¢ÏÖ£º3ÖֺϽð¾ù³öÏÖÃ÷ÏԵļ·Ñ¹Á÷Ïߣ¬µ«¼·Ñ¹Á÷ÏßÉϵĵڶþÏàµÄÖÖÀà¡¢ÊýÁ¿ºÍ·Ö²¼¾ùÓнϴó²î±ð¡£0ZnºÏ½ðÖеڶþÏàÖ÷ҪΪ·½¿éREÏàºÍ¸»Zr¿ÅÁ££»1ZnºÏ½ðÖй۲쵽LPSO½á¹¹£¬Mg5(RE, Zn)¿ÅÁ££¬·½¿éREÏàºÍZn-ZrÏࣻ2ZnºÏ½ðÖÐͬÑù¹Û²ìµ½LPSO½á¹¹£¬Mg5(RE, Zn)¿ÅÁ££¬·½¿éREÏàºÍZn-ZrÏà¡£ÔÚMg-7Gd-5Y-1Nd-0.5ZrºÏ½ðÖÐÌí¼ÓZnÔªËØ£¬²»½ö´Ù½øLPSO½á¹¹µÄÐγɣ¬Ò²´Ù½øMg5(RE, Zn)¿ÅÁ£µÄÎö³ö£¬ÇÒZnÔªËØÄÜÓëZrÔªËØÐγÉZn-ZrÏà¡£LPSO½á¹¹µÄº¬Á¿ËæZnº¬Á¿µÄÔö¼Ó¶øÔö¼Ó£¬1ZnºÏ½ðÖй۲쵽Ƭ²ã×´LPSO½á¹¹ºÍÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é£»2ZnºÏ½ðÖÐÄܹ۲쵽3ÖÖ²»Í¬ÐÎòµÄLPSO½á¹¹£º²»¹æÔòÐÎ×´µÄLPSO½á¹¹£¬Æ¬²ã×´LPSO½á¹¹ºÍÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é¡£Mg5(RE, Zn)¿ÅÁ£µÄº¬Á¿ËæZnº¬Á¿µÄÔö¼Ó¶ø¼õС£¬ÇҳߴçºÍ·Ö²¼¾ù·¢ÉúÃ÷ÏԱ仯¡£1ZnºÏ½ðÖÐÑؼ·Ñ¹·½Ïò·Ö²¼ÓÐÐí¶à´ó³ß´ç΢Ã×¼¶µÄMg5(RE, Zn)¿ÅÁ£ºÍ´ó³ß´çMg5(RE, Zn)¿ÅÁ£ÆÆËéºóµÄС¿ÅÁ££¬ÕâЩMg5(RE, Zn)¿ÅÁ£Ö÷Òª·Ö²¼ÔÚ¾§½çÉÏ¡£2ZnºÏ½ðÖÐÑÇ΢Ã×¼¶µÄMg5(RE, Zn)¿ÅÁ£¾ùÔÈ·Ö²¼ÓÚ¾§Äں;§½ç´¦£¬ÊýÁ¿¶àÇÒ¾ùÔÈ·Ö²¼£¬³ß´ç±È1ZnµÄMg5(RE, Zn)¿ÅÁ£Ð¡1~2¸öÊýÁ¿¼¶£¬ÔÚ¾§½ç´¦Äܶ¤Ôú¾§½ç£¬×è°­¾§Á£³¤´ó¡£1ZnºÏ½ðÖÐÔÚ¾ùÔÈ»¯ÈÈ´¦Àí¹ý³ÌÖУ¬µÚ¶þÏà»ØÈܳä·Ö£¬Ã¾»ùÌåÖÐRE/Zn¹ý±¥ºÍ¶È½Ï¸ß£¬ÈÝÒ×Îö³ö´ó³ß´çµÄMg5(RE, Zn)Ïà¿ÅÁ£¡£2ZnºÏ½ðÖÐÐγɵÄLPSO½á¹¹ÏûºÄÁË´óÁ¿µÄRE/ZnÔªËØ£¬´ó´ó¼õÉÙÁ˦Á-Mg»ùÌåÖеĹý±¥ºÍ¶È£¬ÔÚ¼·Ñ¹±äÐιý³ÌÎö³ö¾ùÔÈ·Ö²¼µÄÑÇ΢Ã×¼¶µÄMg5(RE, Zn)¿ÅÁ£¡£

2.2  ¼·Ñ¹Ì¬ºÏ½ðµÄÖ¯¹¹ºÍ¶¯Ì¬Ôٽᾧ·ÖÎö

ÓÃEBSD¼¼Êõ¶Ô3ÖÖMg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð½øÐÐÁË·ÖÎö£¬3ÖֺϽðµÄ·´¼«Í¼Ãæ·Ö²¼Í¼ºÍ·´¼«Í¼(Inverse pole figure, IPF)Óë¡¢ºÍ//¼·Ñ¹Öá(Extrusion direction, ED)µÄÃæ·Ö²¼Í¼ÁÐÓÚͼ5¡£Í¼5ÖкÚÉ«ÇøÓòΪEBSDδʶ±ðµÄÏ࣬ͨ¹ýÓë΢¹Û×éÖ¯(¼ûͼ1)¶Ô±È¿ÉÖª£¬Í¼5(b)ÖкÚÉ«ÇøÓòΪMg5(RE, Zn)¿ÅÁ£ÔÚµç½âÅ×¹âʱ¸¯Ê´µôÐγɵĿ׶´£»Í¼5(c)ÖкÚÉ«ÇøÓòΪ²»¹æÔòÐÎ×´µÄLPSO½á¹¹£¬Í¨¹ýÈí¼þδÄܽ«Æä±ê¶¨³öÀ´£¬¸ù¾ÝLPSO½á¹¹Óë¦Á-Mg»ùÌåIQÖµµÄÏÔÖø²î±ð£¬È¥µô´ó¿é²»¹æÔòµÄLPSO½á¹¹£¬Ö»±£Áô¦Á-Mg»ùÌåµÄÊý¾Ý¡£ÓÉÓÚÕâÊǼ·Ñ¹°ô²Ä£¬Ö»ÄÜÈ·¶¨ED·½Ïò£¬ÆäËûÁ½¸ö·½ÏòÄÑÒÔÈ·¶¨£¬¹Ê°ÑED×÷ΪZÖá½øÐд¦ÀíÊý¾Ý·ÖÎö¡£

3ÖÖMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðµÄDRXÂÊ·Ö±ðΪ99.1%¡¢95.5%ºÍ82.1%(¶¨Ò徧Á£ÄÚƽ¾ùÈ¡Ïò²îСÓÚ0.8Ϊ·¢ÉúÁËDRX)£¬ËæZnº¬Á¿Ôö¼Ó£¬DRXÂʼõÉÙ¡£2ZnºÏ½ðÖгöÏÖÁËun-DRXµÄ±äÐδó¾§Á£ºÍDRXС¾§Á£µÄË«Ä£½á¹¹£¬ÕâÖֽṹµÄ´æÔÚ£¬ÄÜÌá¸ßþºÏ½ðµÄÁ¦Ñ§ÐÔÄÜ[32]¡£±äÐδó¾§Á£ÄÚ²¿ÓдóÁ¿µÄƬ²ã×´LPSO½á¹¹(ͼ5(c)ºÍ(i)ÖкÚÉ«¼ýÍ·Ëùʾ)£¬±íÃ÷Ƭ²ã×´µÄLPSO½á¹¹Äܹ»×è°­DRX¡£

´Óͼ5(a)~(c)ÖпÉÒÔÃ÷ÏÔ¿´³ö£¬3ÖÖ¼·Ñ¹Ì¬ºÏ½ðµÄ¾§Á£³ß´çÃ÷ÏÔ¼õС£¬¾§Á£³ß´ç·Ö±ðΪ20 ¦Ìm¡¢11 ¦ÌmºÍ8.9 ¦Ìm£¬2ZnºÏ½ðÖÐDRXС¾§Á£µÄƽ¾ù¾§Á£³ß´çΪ4.3 ¦Ìm¡£¾§Á£³ß´ç°´GB/T 36165¡ª2018[35]¼ÆË㣬ͳ¼Æ¾§Á£ÔÚ1500¸öÒÔÉÏ¡£¾§Á£Ï¸»¯µÄÖ÷ÒªÔ­Òò£º1) LPSO½á¹¹²»½öÄÜÔÚÈÈ´¦Àí¹ý³ÌÖÐ×è°­¾§Á£³¤´ó£¬Ê¹µÃ¼·Ñ¹Ç°µÃ3ÖֺϽðԭʼ¾§Á£´óСËæZnº¬Á¿Ôö¼Ó¶ø¼õС£¬Ò²ÄÜÔÚ¼·Ñ¹¹ý³ÌÖУ¬×è°­¾§Á£³¤´ó£»2) 2ZnºÏ½ðÖзֲ¼µÄÑÇ΢Ã×¼¶Mg5(RE, Zn)¿ÅÁ£¿É´Ù½øDRX£¬²¢ÔÚ¾§½ç´¦Äܶ¤Ôú¾§½ç£¬×è°­¾§Á£³¤´óµÈ¡£´ËÍ⣬ÔÚ¼·Ñ¹¹ý³ÌÖУ¬0ZnºÏ½ð¼·Ñ¹Á÷ÏßÉϵĵڶþÏà¿ÅÁ£¿Éϸ»¯¾§Á£(ͼ5(a)ºÍ(g)ºÚÉ«ÍÖÔ²Ëùʾ)¡£Æ¬²ã×´µÄLPSO½á¹¹¿ÉÒÔ×è°­DRX¹ý³ÌÖо§Á£µÄ³¤´ó(ͼ5(b)ºÍ(h)Öа×É«ÍÖÔ²Ëùʾ)£¬Ï¸»¯¾§Á£¡£Æ¬²ã×´µÄLPSO½á¹¹ÒÖÖƾ§¸ñÔÚ³õʼ¾§½ç¸½½üµÄÐýת£¬Ò²×èÖ¹Á˾§Á£±ß½çµÄǨÒÆ¡£

ͼ5(d)~(f)ËùʾΪMg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðÑØ[001]·½Ïò(ED)µÄ·´¼«Í¼(IPF)¡£½á¹û±íÃ÷£¬0ZnºÍ1ZnºÏ½ðµÄÖ¯¹¹ÀàÐ;ùΪ//EDÖ¯¹¹£¬(0001)»ùÃæ´¹Ö±ÓÚ¼·Ñ¹·½Ïò£¬¼«Öµ·Ö±ðΪ3.593ºÍ8.941£»2ZnºÏ½ðµÄÖ¯¹¹Ã÷ÏÔÈõ»¯£¬ÇÒÖ¯¹¹ÀàÐÍÓÐÁ½ÖÖ//EDºÍ//ED(»ùÃæÖ¯¹¹£¬»ùÃæ(0001)ƽÐÐÓÚ¼·Ñ¹Öá)¡£Í¨¹ýͼ5(c)ºÍ(i)Äܹ»Ã÷ÏÔ¿´³ö2ZnºÏ½ðÖбäÐδó¾§Á£µÄÖ¯¹¹Îª//ED£¬»ùÃæÖ¯¹¹£¬ÕâÓëÎÄÏ×[27, 36]Öб¨µÀÏàÒ»Ö¡£Mg-Gd-Y-Zn-Zr¼·Ñ¹Ì¬ºÏ½ðÖеÄÖ¯¹¹Í¨³£Îª»ùÃæÖ¯¹¹£¬»ùÃæ(0001)ƽÐÐÓÚED»òÕßƽÐÐÓÚED[27, 36-37]¡£½áºÏ0ZnºÍ1ZnµÄDRXºÍÖ¯¹¹ÀàÐÍ£¬¿ÉÒÔ˵Ã÷//EDÖ¯¹¹ÊÇÓÉÓÚDRXµ¼Öµġ£ÕâÖÖ// EDÖ¯¹¹±»ÈÏΪÊÇÒ»ÖÖÔٽᾧ֯¹¹£¬ÕâÖÖÈ¡Ïò¸ü¾ßÉú³¤ÓÅÊÆ[38]¡£Í¼5(g)~(i)ËùʾΪMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðµÄ¡¢ºÍ·Ö±ðƽÐÐÓÚEDµÄÃæ·Ö²¼Í¼(½ÓÊܵÄÈ¡Ïò²îΪ15¡ã)£¬//EDµÄÃæ»ý·ÖÊý·Ö±ðΪ9.1%¡¢27.0%ºÍ5.6%¡£±È½Ïͼ5(b)ºÍ(h)£¬//EDµÄ¾§Á£Ö÷Òª¼¯ÖÐMg5(RE, Zn)¿ÅÁ£¼·Ñ¹Á÷ÏßÃܼ¯µÄ¸½½ü£¬Ô¶ÀëƬ²ã×´LPSO£¬¿ÉÈÏΪ1ZnºÏ½ðÖÐÇ¿Ö¯¹¹ÊÇÓÉÓÚMg5(RE, Zn)¿ÅÁ£µÄ×谭þ¾§Á£¾§¸ñµÄÐýתËùÐγɵģ¬¶øLPSO½á¹¹¿ÉÒÖÖÆÕâÖÖÖ¯¹¹µÄÐγɡ£

ͼ5  Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðEBSD·ÖÎö

Fig. 5  EBSD results of Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2) extruded alloy

2.3  Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðÁ¦Ñ§ÐÔÄÜ

ͼ6ËùʾΪMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðµÄÊÒÎÂÁ¦Ñ§ÐÔÄÜ¡£0ZnºÏ½ðµÄ¿¹À­Ç¿¶È(UTS)¡¢Çü·þÇ¿¶È(YS)ºÍÉ쳤ÂÊ(EL)·Ö±ðΪ284 MPa¡¢199 MPaºÍ11.0%£»1ZnºÏ½ðµÄUTS¡¢YSºÍEL·Ö±ðΪ325 MPa¡¢260 MPaºÍ6.0%£»2ZnºÏ½ðµÄUTS¡¢YSºÍEL·Ö±ðΪ365 MPa¡¢276 MPaºÍ17.5%¡£ÓÉÓÚÊÇʵÑéÊÒÒ±Á¶µÄСÖý¶§£¬ÇÒ±äÐι¤ÒÕÒ²²»Í¬ÓÚ¹¤ÒµÉú²ú£¬ËùÒÔÐÔÄÜÓ빤ҵÉú²úEW75²»´ó¿É±È½Ï¡£ÔÚ±¾ÊµÑéÌõ¼þÏ£¬±È½Ï3ÖÖ¼·Ñ¹Ì¬ºÏ½ðµÄÊÒÎÂÁ¦Ñ§ÐÔÄÜ£¬¿ÉÖª£¬ËæZnº¬Á¿µÄÉý¸ß£¬¿¹À­Ç¿¶È(UTS)ºÍÇü·þÇ¿¶È(YS)¾ùÉý¸ß£»2ZnºÏ½ð»ñµÃÁË×îÓŵÄÁ¦Ñ§ÐÔÄÜ¡£

ͼ6  Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2, ÖÊÁ¿·ÖÊý£¬%)¼·Ñ¹Ì¬ºÏ½ðµÄÊÒÎÂÁ¦Ñ§ÐÔÄÜ

Fig. 6  Mechanical properties of Mg-7Gd-5Y-1Nd-xZn- 0.5Zr (x=0, 1, 2, mass fraction, %) extruded alloys at room temperature

ͼ7ËùʾΪMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð¶Ï¿ÚÐÎò¡£0ZnºÏ½ðµÄ¶Ï¿Ú±íÃæÐÎòΪÈÍÎÑ×´£¬ÎªµäÐ͵ÄÈÍÐÔ¶ÏÁÑÌØÕ÷¡£1ZnºÏ½ð¶Ï¿Ú±íÃæÐÎòΪÈÍÎÑ×´£¬ÔÚÈÍÎÑÖÐÐÄÓдóÁ¿Î¢Ã×¼¶µÄMg5(RE, Zn)¿ÅÁ£´æÔÚ£¬ÕâЩMg5(RE, Zn)¿ÅÁ£ÖдæÔÚ΢ÁÑÎÆ¡£ÔÚÀ­Éì±äÐιý³Ì£¬´ó³ß´çµÄMg5(RE, Zn)¿ÅÁ£Óë¦Á-Mg½çÃæ´¦³öÏÖÓ¦Á¦£¬ÃÈÉúÁÑÎÆ£¬ÑÏÖصؽµµÍÁ˸úϽðµÄÉ쳤ÂÊ[39]¡£2ZnºÏ½ð¶Ï¿Ú±íÃæ³ýÁË´óÁ¿µÄÈÍÎÑÍ⣬»¹¹Û²ìµ½Ðí¶à˺ÁÑÀ⣬ÕâЩ˺ÁÑÀâ¾ù³öÏÖÔÚ¿é×´LPSO½á¹¹Ïà´¦£¬ÇÒÓëþ»ùÌå¼äûÓÐÃ÷ÏԵĽçÏÞ£¬½áºÏTEMµÄ½á¹û£¬ÁÑÎÆÓ¦ÆðÔ´ÓÚ¿é×´LPSO½á¹¹ÔÚ¼·Ñ¹¹ý³ÌÖÐÐγɵĶϿڴ¦¡£

½ðÊô²ÄÁÏÇ¿»¯µÄ»ù±¾Í¾¾¶ÊÇ×谭λ´íÔ˶¯£¬Óë΢¹Û×éÖ¯½á¹¹Ïà¹Ø[15]¡£¸ù¾ÝEBSD·ÖÎöµÄ½á¹û£¬Mg-7Gd-5Y-1Nd-xZn- 0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ðµÄ¾§Á£³ß´çËæZnº¬Á¿ µÄÔö¼ÓÖð½¥¼õС¡£¸ù¾ÝHall-Petch¹Øϵ(ΪÇü·þÇ¿¶È£¬Îª¾§¸ñĦ²ÁÁ¦£¬KΪ³£Êý£¬dΪ¾§Á£³ß´ç)¿ÉÖª£¬¾§Á£³ß´çԽС£¬ºÏ½ðµÄÇü·þÇ¿¶ÈÔ½´ó¡£Í¬Ê±£¬¾§Á£³ß´ç¼õС£¬»¹ÄÜÌá¸ßºÏ½ðµÄËÜÐÔºÍÈÍÐÔ¡£

ͼ7  Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð¶Ï¿ÚÐÎò

Fig. 7  Microstructures of fracture position of tensile specimens of Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2) extruded alloys

1ZnºÏ½ð´æÔÚµÄLPSO½á¹¹¡¢Mg5(RE, Zn)¿ÅÁ£ºÍZn-ZrÏàÆðµ½µÚ¶þÏàÇ¿»¯µÄ×÷Ó㬵«1ZnºÏ½ðMg5(RE, Zn)¿ÅÁ£µÄ³ß´ç½Ï´ó£¬Ó¦Á¦ÔÚÕâЩ´ó¿ÅÁ£µÄMg5(RE, Zn)¿ÅÁ£¸½½ü¼¯ÖУ¬ÒýÆðÁÑÎƵÄÃÈÉú£¬ÎªÁÑÎÆÔÚ¾§½çµÄÀ©Õ¹Ìṩ·¾¶£¬µ¼ÖºϽðµÄËÜÐÔ½µµÍ¡£2ZnºÏ½ðÖеÄLPSO½á¹¹Ï࣬¾ùÔÈ·Ö²¼µÄÑÇ΢Ã×¼¶Mg5(RE, Zn)ÏàÆðµÚ¶þÏàÇ¿»¯×÷Ó㻲»¹æÔòÐÎ×´LPSO½á¹¹¿ÉÒÔÆðµ½ÏËάǿ»¯µÄ×÷Óá£LPSO½á¹¹ÏàΪËÜÈÍÏ࣬ÔÚÌá¸ßºÏ½ðÇ¿¶ÈµÄͬʱ£¬»¹ÄÜÌá¸ßºÏ½ðµÄËÜÐÔ¡£LPSO½á¹¹Ç¿ÈÍ»¯µÄ»úÀíÖ÷ÒªÓУº1) LPSO½á¹¹ÄÜÓÐЧ´Ù½ø±äÐιý³ÌÖÐDRX¾§Á£µÄϸ»¯£»2) LPSO½á¹¹Èõ»¯Ö¯¹¹£¬Ìá¸ßþºÏ½ðµÄËÜÐÔ£»3) LPSO½á¹¹ÓëMg»ùÌåÍêÈ«¹²¸ñ£»4) LPSO½á¹¹Å¤ÕÛ±äÐΡ£

ÔÚÕâÈýÖֺϽð¾ùδ¹Û²ìµ½ÂϾ§£¬{1001}»ùÃ滬ÒÆÖ÷µ¼Ã¾ºÏ½ðÊÒÎÂϵÄËÜÐÔ±äÐΡ£Í¼8ËùʾΪMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð(0001)µÄSchmidÒò×Ó·Ö²¼Ö±·½Í¼£¬Æ½¾ùSchmidÒò×Ó·Ö±ð0.27¡¢0.24ºÍ0.31¡£1ZnºÏ½ðÖеÄSchmidÒò×Ó×îµÍ£¬±íÃ÷Æä»ùÃ滬ÒÆÄÑÒÔ¼¤»î¡£Í³¼Æ3ÖֺϽð¼·Ñ¹Ì¬µÄSchmidÒò×ÓÔÚ0.4~0.5µÄ·ÖÊý£¬·Ö±ðΪ26.14%¡¢21.44%ºÍ37.77%£¬½øÒ»²½±íÃ÷¶Ô1ZnºÏ½ð£¬»ùÃ滬ÒÆÄÑÒÔ¼¤»îÆô¶¯¡£ÔÙ½áºÏͼ4ÖÐ//EDµÄÃæ·ÖÊý(9.1%¡¢27.0%ºÍ5.6%)£¬1ZnºÏ½ðÖÐÔغɷ½Ïò´¹Ö±»¬ÒÆÃæµÄÃæ·ÖÊý×î¶à£¬Ò×·¢Éú¾Ö²¿½âÀí¶ÏÁÑ£¬½µµÍºÏ½ðµÄËÜÐÔ¡£

ͼ8  Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2)¼·Ñ¹Ì¬ºÏ½ð(0001)µÄSchmidÒò×Ó·Ö²¼Ö±·½Í¼

Fig. 8  Schmid factor distribution histograms of (0001)  for Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2) extruded  alloys

3  ½áÂÛ

1) ÔÚMg-7Gd-5Y-1Nd-0.5ZrÖÐÌí¼ÓZnÔªËØ£¬²»½öÄÜÐγÉLPSO½á¹¹£¬Ò²´Ù½øÁËMg5(RE, Zn)¿ÅÁ£µÄÎö³ö¡£LPSO½á¹¹µÄÊýÁ¿¼°ÐÎò£¬Mg5(RE, Zn)¿ÅÁ£µÄ´óС¼°·Ö²¼ÓëZnº¬Á¿Óйء£1ZnºÏ½ðÖй۲쵽Ƭ²ã×´LPSO½á¹¹ºÍÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é£»2ZnºÏ½ðÖÐÄܹ۲쵽3ÖÖ²»Í¬ÐÎòµÄLPSO½á¹¹£º²»¹æÔòÐÎ×´µÄLPSO½á¹¹£¬Æ¬²ã×´LPSO½á¹¹ºÍÑÇÎȵÄLPSO½á¹¹¹¹½¨¿é¡£1ZnºÏ½ðÖÐÑؼ·Ñ¹·½Ïò·Ö²¼ÓÐÐí¶à´ó³ß´çµÄMg5(RE, Zn)¿ÅÁ££¬Ö÷Òª·Ö²¼ÔÚ¾§½çÉÏ£»2ZnºÏ½ðÖÐÑÇ΢Ã×¼¶µÄMg5(RE, Zn)¿ÅÁ£¾ùÔÈ·Ö²¼ÓÚ¾§Äں;§½ç´¦£¬³ß´ç±È1ZnµÄMg5(RE, Zn)¿ÅÁ£Ð¡1~2¸öÊýÁ¿¼¶¡£

2) 3ÖÖ¼·Ñ¹Ì¬ºÏ½ðµÄ¾§Á£³ß´çËæ×ÅZnº¬Á¿µÄÔö¼Ó¶ø¼õС£»DRXÂÊËæZnº¬Á¿µÄÔö¼Ó¶ø½µµÍ£»0ZnÓë1ZnºÏ½ð¾ùΪ//EDÖ¯¹¹£¬2ZnºÏ½ðΪ//EDÖ¯¹¹ºÍ//ED»ìºÏÖ¯¹¹£¬ÇÒÖ¯¹¹Ã÷ÏÔÈõ»¯¡£DRX¾§Á£Îª//EDÖ¯¹¹£»±äÐδó¾§Á£Îª//EDÖ¯¹¹¡£

3) 2ZnºÏ½ð»ñµÃÁË×îÓŵÄÁ¦Ñ§ÐÔÄÜ£¬Æ俹À­Ç¿¶È¡¢Çü·þÇ¿¶ÈºÍÉ쳤ÂÊ·Ö±ðΪ365 MPa¡¢276 MPaºÍ17.5%¡£Ö÷Òª¹éÒòÓÚ¾§Á£Ï¸»¯µÄ¾§½çÇ¿»¯×÷Óã¬LPSO½á¹¹¡¢ÑÇ΢Ã×¼¶Mg5(RE, Zn)Ïà¡¢Zn-ZrÏàµÄµÚ¶þÏàÇ¿»¯×÷ÓÃÓ붯̬Ôٽᾧ¾§Á£ºÍ±äÐξ§Á£¹²´æµÄË«Ä£½á¹¹¡£

REFERENCES

[1] Îâ¹ú»ª, ³ÂÓñʨ, ¶¡ÎĽ­. þºÏ½ðÔÚº½¿Õº½ÌìÁìÓòÑо¿Ó¦ÓÃÏÖ×´ÓëÕ¹Íû[J]. ÔØÈ˺½Ìì, 2016, 22(3): 281-292.

WU Guo-hua, CHEN Yu-shi, DING Wen-jiang. Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22(3): 281-292.

[2] ¸¶Åí»³, ÅíÁ¢Ã÷, ¶¡ÎĽ­. Æû³µÇáÁ¿»¯¼¼Êõ:ÂÁ/þºÏ½ð¼°Æä³ÉÐͼ¼Êõ·¢Õ¹¶¯Ì¬[J]. Öйú¹¤³Ì¿Æѧ, 2018, 20(1): 84-90.

FU Peng-huai, PENG Li-ming, DING Wen-jiang. Automobile lightweight technology: Development trends of aluminum/magnesium alloys and their forming technologies[J]. Strategic Study of CAE, 2018, 20(01): 84-90.

[3] Ô¬ ½Ü, ¹ù±¦»á. MgºÏ½ðÔÚÆû³µ¹¤ÒµÖеÄÓ¦ÓýøÕ¹[J]. ÖýÔì¼¼Êõ, 2017(12): 2799-2804.

YUAN Jie, GUO Bao-hui. Research advances of magnesium alloys in automobile applications[J]. Foundry Technology, 2017(12): 2799-2804.

[4] Ñî ³Ì, ¶ÅºìÐÇ, ÁõÏþƽ. þºÏ½ðÔÚ3C²úÆ·ÖÐÓ¦ÓÃÏÖ×´¼°Ç°¾°Õ¹Íû[J]. ÖýÔìÉ豸Ñо¿, 2005(6): 46-49.

YANG Cheng, DU Hong-xing, LIU Xiao-ping. Application and developing tendency of magnesium alloys in 3C products[J]. Foundry Equipment and Technology, 2005(6): 46-49.

[5] NIE J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(11): 3891-3939.

[6] ÔøСÇÚ, Ê·èÉÓ±. Ï¡ÍÁþºÏ½ðÇ¿ÈÍÐÔÉè¼ÆÓ뿪·¢[J]. º½¿Õ²ÄÁÏѧ±¨, 2017, 37(1): 18-25.

ZENG Xiao-qin, SHI Xiao-ying. Strengthening and toughening design and development of Mg-rare earth alloys[J]. Journal of Aeronautical Materials,2017, 37(1): 18-25.

[7] JUNG I H, SANJARI M, KIM J, et al. Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg-RE alloys[J]. Scripta Materialia, 2015, 102: 1-6.

[8] ZHANG Jing-huai, LIU Shu-juan, WU Rui-zhi, et al. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems[J]. Journal of Magnesium and Alloys, 2018, 6(3): 277-291.

[9] ÎâÎÄÏé, ½ù Àö, ¶­ ½Ü, µÈ. Mg-Gd-Y-Zr¸ßÇ¿ÄÍÈÈþºÏ½ðµÄÑо¿½øÕ¹[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2011, 21(11): 2709-2718.

WU Wen-xiang, JIN Li, DONG Jie, et al. Research progress of high strength and heat resistant Mg-Gd-Y-Zr alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2709-2718.

[10] PENG Q M, WU Y M, FANG D Q, et al. Microstructures and properties of Mg-7Gd alloy containing Y[J]. Journal of Alloys and Compounds, 2007, 430(1): 252-256.

[11] ÀîÑïÐÀ, ÔøСÇÚ. ¸ßÇ¿ËÜ»ýþϡÍÁºÏ½ðµÄÑо¿½øÕ¹[J]. º½¿Õ²ÄÁÏѧ±¨, 2018, 38(4): 4-13.

LI Yang-xin, ZENG Xiao-qin. A review on Mg-RE alloys with high product of strength and elongation[J]. Journal of Aeronautical Materials, 2018, 38(4): 4-13.

[12] HONMA T, OHKUBO T, KAMADO S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J]. Acta Materialia, 2007, 55(12): 4137-4150.

[13] XU D, HAN E, XU Y. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review[J]. Progress in Natural Science: Materials International, 2016, 26(2): 117-128.

[14] Àî Ïì, ëƼÀò, Íõ ·å, µÈ. ³¤ÖÜÆÚÓÐÐò¶Ñ¶âÏà(LPSO)µÄÑо¿ÏÖ×´¼°ÔÚþºÏ½ðÖеÄ×÷ÓÃ[J]. ²ÄÁϵ¼±¨, 2019, 33(4): 1182-1189.

LI Xiang, MAO Ping-li, WANG Feng, et al. A literature review on study of long-period stacking ordered phase and its effect on magnesium alloys[J]. Materials Review, 2019, 33(4): 1182-1189.

[15] WANG Ya-fei, ZHANG Fan, WANG Yu-tian, et al. Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys[J]. Materials Science and Engineering A, 2019, 745: 149-158.

[16] ZHOU Xiao-jie, LIU Chu-ming, GAO Yong-hao, et al. Microstructure and mechanical properties of extruded Mg-Gd-Y-Zn-Zr alloys filled with intragranular LPSO phases[J]. Materials Characterization, 2018, 135: 76-83.

[17] WU X, PAN F, CHENG R. Formation of long period stacking ordered phases in Mg-10Gd-1Zn-0.5Zr (wt.%) alloy[J]. Materials Characterization, 2019, 147: 50-56.

[18] ONO A, ABE E, ITOI T, et al. Microstructure evolutions of rapidly- solidified and conventionally-cast Mg97Zn1Y2 alloys[J]. Materials Transactions, 2008, 49(5): 990-994.

[19] ZHU Y M, MORTON A J, NIE J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58(8): 2936-2947.

[20] CHEN Tao, CHEN Zhi-yong, SHAO Jian-bo, et al. Evolution of LPSO phases in a Mg-Zn-Y-Gd-Zr alloy during semi-continuous casting, homogenization and hot extrusion[J]. Materials & Design, 2018, 152: 1-9.

[21] CHEN Tao, CHEN Zhi-yong, SHAO Jian-bo, et al. The role of long-period stacking ordered phases in the deformation behavior of a strong textured Mg-Zn-Gd-Y-Zr alloy sheet processed by hot extrusion[J]. Materials Science and Engineering A, 2019, 750: 31-39.

[22] WU Xia, PAN Fu-sheng, CHENG Ren-ju, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy[J]. Materials Science and Engineering A, 2018, 726: 64-68.

[23] XU Chao, NAKATA T, QIAO Xiao-guang, et al. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy[J]. Scientific reports, 2017, 7: 40846.

[24] KIM J K, KO W S, SANDL€OBES S, et al. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy[J]. Acta Materialia, 2016, 112: 171-183.

[25] LI M, WANG X, FENG Q Y, et al. The effect of morphology of the long-period stacking ordered phase on mechanical properties of the Mg-7Gd-3Y-1Nd-1Zn-0.5Zr (wt.%) alloy[J]. Materials Characterization, 2017, 125: 123-133.

[26] ʯºé¼ª, µËÔËÀ´, ÕÅ ¿­, µÈ. Ndº¬Á¿¶ÔMg-6Gd-2.5Y-0.5ZrºÏ½ðÏÔ΢×éÖ¯ºÍÁ¦Ñ§ÐÔÄܵÄÓ°Ïì[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2017, 27(9): 1785-1793.

SHI Hong-ji, DENG Yun-lai, ZHANG Kai, et al. Effects of Nd addition on microstructure and mechanical properties of Mg-6Gd-2.5Y-0.5Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(9): 1785-1793.

[27] YU Zi-jian, XU Chao, MENG Jian, et al. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions[J]. Materials Science & Engineering A, 2018, 713: 234-243.

[28] Áõ ΰ. Mg-Gd-Y-ZnϵºÏ½ðʱЧÎö³öÐÐΪµÄÑо¿[D]. ±±¾©: ±±¾©ÓÐÉ«½ðÊôÑо¿×ÜÔº, 2019.

LIU Wei. Study on the precipitation behavior of Mg-Gd-Y-Zn based alloys during aging treatment[D]. Beijing: Beijing General Research Institute for Nonferrous Metals, 2019.

[29] ÀîÓÀ¾ü, ÕÅ ¿ü, ÀîÐ˸Õ, µÈ. ¼·Ñ¹±äÐζÔMg-5.0Y- 7.0Gd-1.3Nd-0.5ZrºÏ½ð×éÖ¯ºÍÐÔÄܵÄÓ°Ïì[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2010, 20(9): 1692-1697.

LI Yong-jun, ZHANG Kui, LI Xing-gang, et al. Influence of extrusion on microstructures and mechanical properties of Mg-5.0Y-7.0Gd-1.3Nd-0.5Zr magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1692-1697.

[30] LI Ting, DU Zhi-wei, ZHANG Kui, et al. Characterisation of precipitates in a Mg-7Gd-5Y-1Nd-0.5Zr alloy aged to peak-ageing plateau[J]. Journal of Alloys and Compounds, 2013, 574: 174-180.

[31] LI Ting, ZHANG Kui, LI Xing-gang, et al. Dynamic precipitation during multi-axial forging of an Mg-7Gd-5Y-1Nd-0.5 Zr alloy[J]. Journal of Magnesium and Alloys, 2013, 1(1): 47-53.

[32] XU C, NAKATA T, FAN G H, et al. Microstructure and mechanical properties of extruded Mg-Gd-Y-Zn alloy with Mn or Zr addition[J]. Journal of Materials Science, 2019, 54(14): 10473-10488.

[33] ZHANG Jin-shan, ZHANG Wen-bo, BIAN Li-ping, et al. Study of Mg-Gd-Zn-Zr alloys with long period stacking ordered structures[J]. Materials Science and Engineering: A, 2013, 585: 268-276.

[34] BASU I, AI-AAMMAN T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium[J]. Acta Materialia, 2014, 67: 116-133.

[35] GB/T 36165¡ª2018. ½ðÊôƽ¾ù¾§Á£¶ÈµÄ²â¶¨µç×Ó±³É¢ÉäÑÜÉä(EBSD)·¨[S].

GB/T 36165¡ª2018. Determination of average grain size of metal electron backscatter diffraction (EBSD) method[S].

[36] XU C, NAKATA T, QIAO X G, et al. Ageing behavior of extruded Mg-8.2Gd-3.8Y-1.0Zn0.4Zr (wt.%) alloy containing LPSO phase and ¦Ã¡ä precipitates[J]. Scientific Reports, 2017, 7: 43391.

[37] CHI Y Q, XU C, QIAO X G, et al. Effect of trace zinc on the microstructure and mechanical properties of extruded Mg-Gd-Y-Zr alloy[J]. Journal of Alloys and Compounds, 2019, 789: 416-427.

[38] ROBSON J D, TWIER A M, LORIMER G W, et al. Effect of extrusion conditions on microstructure, texture, and yield asymmetry in Mg-6Y-7Gd-0.5 wt% Zr alloy[J]. Materials Science and Engineering A, 2011, 528(24): 7247-7256.

[39] YU Zi-jian, XU Chao, MENG Jian, et al. Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg-Gd-Y-(Nd/Zn)-Zr alloys[J]. Materials Science and Engineering A, 2019, 762: 138080.

Microstructures and mechanical properties of extruded Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2) alloys

PENG Yong-gang1, 2, 3, 4, DU Zhi-wei1, 2, 3, 4, LI Yong-jun5, LI-Ting1, 2, 3, 4, HAN Xiao-lei1, 2, 4, MA Ming-long5, PANG Zheng1, 2, 3, 4, XU Yun-pei1, 2, 4, LI Cong1, 2, 4, YUAN Jia-wei5, SHI Guo-liang5

1. National Center of Analysis and Testing for Nonferrous Metals and Electronic Materials, GRINM Group Co., Ltd., Beijing 100088, China;

2. China United Test and Certification Co., Ltd., Beijing 101407, China;

3. Beijing General Research Institute for Nonferrous Metals, Beijing 100088, China;

4. Guobiao (Beijing) Testing and Certification Co., Ltd., Beijing 101407, China;

5. State Key Laboratory of Nonferrous Metals and Processes, GRIMAT Engineering Institute Co., Ltd., Beijing 101407

Abstract: The microstructure and mechanical properties of extruded Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=0, 1, 2, mass fraction, %) alloys were investigated by scanning electron microscope(SEM), transmission electron backscattered diffraction(EBSD) and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The addition of Zn element can form long period stacking ordered (LPSO) structures, promote the precipitation of Mg5(RE, Zn) phases and form Zn-Zr compounds with Zr element. LPSO structures can not only restrict grain growth, refines grain, but also prevent dynamic recrystallization, resulting in dynamic recrystallization grains and deformable grains coexisted, the DRX grains with a //ED texture, and the deformed grains with //ED texture. The large size micron-scale Mg5(RE, Zn) particles can reduce the toughness and plasticity of the alloy, the uniformly distributed submicron-scale Mg5(RE, Zn) particles play the role of second phase strengthening and can nail grain boundaries, and hinder grain growth. For three extruded alloys, the Mg-7Gd-5Y-1Nd-2Zn-0.5Zr alloy obtains the optimal mechanical properties, the tensile strength, yield strength and elongation are 365 MPa, 276 MPa and 17.5%, respectively.

Key words: magnesium alloys; extrusion; long-period stacking ordered (LPSO) structures; HAADF-STEM; mechanical properties

Foundation item: Project(51871195) supported by the National Natural Science Foundation of China

Received date: 2020-02-25; Accepted date: 2020-10-08

Corresponding author: DU Zhi-wei; Tel: +86-10-82241349-8009; E-mail: duzhiwei@gbtcgroup.com

LI Yong-jun; Tel: +86-13601076520; E-mail: liyongjun8158@163.com

(±à¼­  ÀîÑÞºì)

»ù½ðÏîÄ¿£º¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð×ÊÖúÏîÄ¿(51871195)

ÊÕ¸åÈÕÆÚ£º2020-02-25£»ÐÞ¶©ÈÕÆÚ£º2020-10-08

ͨÐÅ×÷Õߣº¶Å־࣬½ÌÊÚ¼¶¸ß¼¶¹¤³Ìʦ£¬²©Ê¿£»µç»°£º010-82241349-8009£»E-mail£ºduzhiwei@gbtcgroup.com

ÀîÓÀ¾ü£¬½ÌÊÚ¼¶¸ß¼¶¹¤³Ìʦ£¬²©Ê¿£»µç»°£»13601076520£»E-mial£ºliyongjun8158@163.com

Õª  Òª£º²ÉÓÃɨÃèµç×ÓÏÔ΢¾µ¡¢µç×Ó±³É¢ÉäÑÜÉ䡢͸Éäµç×ÓÏÔ΢¾µ¡¢¸ß½Ç¶È»·Ðΰµ³¡-ɨÃè͸É䣬·ÖÎöÁËMg-7Gd-5Y-1Nd-xZn-0.5Zr(x=0, 1, 2, ÖÊÁ¿·ÖÊý£¬%)¼·Ñ¹Ì¬ºÏ½ð΢¹Û×éÖ¯½á¹¹ºÍÁ¦Ñ§ÐÔÄÜ£¬Ö¼ÔÚ̽Ë÷Zn¶ÔÓںϽðÐÔÄÜÓ°ÏìµÄ΢¹Û»úÖÆ¡£½á¹û±íÃ÷£ºÔÚMg-7Gd-5Y-1Nd-0.5ZrºÏ½ðÖÐÌí¼ÓZnÔªËØ£¬²»½öÐγÉLPSO½á¹¹£¬Ò²´Ù½øÁËMg5(RE, Zn)¿ÅÁ£µÄÎö³ö£¬²¢ÓëZrÐγÉZn-ZrÏà¡£LPSO½á¹¹²»½öÄÜ×è°­¾§Á£³¤´ó£¬Ï¸»¯¾§Á££»Ò²Äܹ»×è°­¶¯Ì¬Ôٽᾧ£¬´Ó¶øÐγɶ¯Ì¬Ôٽᾧ¾§Á£ºÍ±äÐξ§Á£¹²´æµÄË«Ä£½á¹¹£¬¶¯Ì¬Ôٽᾧ¾§Á£Îª//EDÖ¯¹¹£¬±äÐξ§Á£Îª//EDÖ¯¹¹¡£Î¢Ã×¼¶´ó³ß´çMg5(RE, Zn)¿ÅÁ£»áµ¼ÖÂÓ¦Á¦¼¯ÖУ¬ÒýÆðÁÑÎƵÄÃÈÉú£¬½µµÍºÏ½ðµÄËÜÐÔ£»¾ùÔÈ·Ö²¼µÄÑÇ΢Ã×¼¶Mg5(RE, Zn)¿ÅÁ£ÆðµÚ¶þÏàÇ¿»¯×÷Ó㬲¢Äܶ¤Ôú¾§½ç£¬×è°­¾§Á£³¤´ó¡£¶Ô±È3ÖÖ¼·Ñ¹Ì¬ºÏ½ð£¬Mg-7Gd-5Y-1Nd-2Zn-0.5ZrºÏ½ð»ñµÃÁË×îÓŵÄÁ¦Ñ§ÐÔÄÜ£¬Æ俹À­Ç¿¶È¡¢Çü·þÇ¿¶ÈºÍÉ쳤ÂÊ·Ö±ðΪ365 MPa¡¢276 MPaºÍ17.5%¡£

[1] Îâ¹ú»ª, ³ÂÓñʨ, ¶¡ÎĽ­. þºÏ½ðÔÚº½¿Õº½ÌìÁìÓòÑо¿Ó¦ÓÃÏÖ×´ÓëÕ¹Íû[J]. ÔØÈ˺½Ìì, 2016, 22(3): 281-292.

WU Guo-hua, CHEN Yu-shi, DING Wen-jiang. Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22(3): 281-292.

[2] ¸¶Åí»³, ÅíÁ¢Ã÷, ¶¡ÎĽ­. Æû³µÇáÁ¿»¯¼¼Êõ:ÂÁ/þºÏ½ð¼°Æä³ÉÐͼ¼Êõ·¢Õ¹¶¯Ì¬[J]. Öйú¹¤³Ì¿Æѧ, 2018, 20(1): 84-90.

FU Peng-huai, PENG Li-ming, DING Wen-jiang. Automobile lightweight technology: Development trends of aluminum/magnesium alloys and their forming technologies[J]. Strategic Study of CAE, 2018, 20(01): 84-90.

[3] Ô¬ ½Ü, ¹ù±¦»á. MgºÏ½ðÔÚÆû³µ¹¤ÒµÖеÄÓ¦ÓýøÕ¹[J]. ÖýÔì¼¼Êõ, 2017(12): 2799-2804.

YUAN Jie, GUO Bao-hui. Research advances of magnesium alloys in automobile applications[J]. Foundry Technology, 2017(12): 2799-2804.

[4] Ñî ³Ì, ¶ÅºìÐÇ, ÁõÏþƽ. þºÏ½ðÔÚ3C²úÆ·ÖÐÓ¦ÓÃÏÖ×´¼°Ç°¾°Õ¹Íû[J]. ÖýÔìÉ豸Ñо¿, 2005(6): 46-49.

YANG Cheng, DU Hong-xing, LIU Xiao-ping. Application and developing tendency of magnesium alloys in 3C products[J]. Foundry Equipment and Technology, 2005(6): 46-49.

[5] NIE J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(11): 3891-3939.

[6] ÔøСÇÚ, Ê·èÉÓ±. Ï¡ÍÁþºÏ½ðÇ¿ÈÍÐÔÉè¼ÆÓ뿪·¢[J]. º½¿Õ²ÄÁÏѧ±¨, 2017, 37(1): 18-25.

ZENG Xiao-qin, SHI Xiao-ying. Strengthening and toughening design and development of Mg-rare earth alloys[J]. Journal of Aeronautical Materials,2017, 37(1): 18-25.

[7] JUNG I H, SANJARI M, KIM J, et al. Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg-RE alloys[J]. Scripta Materialia, 2015, 102: 1-6.

[8] ZHANG Jing-huai, LIU Shu-juan, WU Rui-zhi, et al. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems[J]. Journal of Magnesium and Alloys, 2018, 6(3): 277-291.

[9] ÎâÎÄÏé, ½ù Àö, ¶­ ½Ü, µÈ. Mg-Gd-Y-Zr¸ßÇ¿ÄÍÈÈþºÏ½ðµÄÑо¿½øÕ¹[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2011, 21(11): 2709-2718.

WU Wen-xiang, JIN Li, DONG Jie, et al. Research progress of high strength and heat resistant Mg-Gd-Y-Zr alloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2709-2718.

[10] PENG Q M, WU Y M, FANG D Q, et al. Microstructures and properties of Mg-7Gd alloy containing Y[J]. Journal of Alloys and Compounds, 2007, 430(1): 252-256.

[11] ÀîÑïÐÀ, ÔøСÇÚ. ¸ßÇ¿ËÜ»ýþϡÍÁºÏ½ðµÄÑо¿½øÕ¹[J]. º½¿Õ²ÄÁÏѧ±¨, 2018, 38(4): 4-13.

LI Yang-xin, ZENG Xiao-qin. A review on Mg-RE alloys with high product of strength and elongation[J]. Journal of Aeronautical Materials, 2018, 38(4): 4-13.

[12] HONMA T, OHKUBO T, KAMADO S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J]. Acta Materialia, 2007, 55(12): 4137-4150.

[13] XU D, HAN E, XU Y. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review[J]. Progress in Natural Science: Materials International, 2016, 26(2): 117-128.

[14] Àî Ïì, ëƼÀò, Íõ ·å, µÈ. ³¤ÖÜÆÚÓÐÐò¶Ñ¶âÏà(LPSO)µÄÑо¿ÏÖ×´¼°ÔÚþºÏ½ðÖеÄ×÷ÓÃ[J]. ²ÄÁϵ¼±¨, 2019, 33(4): 1182-1189.

LI Xiang, MAO Ping-li, WANG Feng, et al. A literature review on study of long-period stacking ordered phase and its effect on magnesium alloys[J]. Materials Review, 2019, 33(4): 1182-1189.

[15] WANG Ya-fei, ZHANG Fan, WANG Yu-tian, et al. Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys[J]. Materials Science and Engineering A, 2019, 745: 149-158.

[16] ZHOU Xiao-jie, LIU Chu-ming, GAO Yong-hao, et al. Microstructure and mechanical properties of extruded Mg-Gd-Y-Zn-Zr alloys filled with intragranular LPSO phases[J]. Materials Characterization, 2018, 135: 76-83.

[17] WU X, PAN F, CHENG R. Formation of long period stacking ordered phases in Mg-10Gd-1Zn-0.5Zr (wt.%) alloy[J]. Materials Characterization, 2019, 147: 50-56.

[18] ONO A, ABE E, ITOI T, et al. Microstructure evolutions of rapidly- solidified and conventionally-cast Mg97Zn1Y2 alloys[J]. Materials Transactions, 2008, 49(5): 990-994.

[19] ZHU Y M, MORTON A J, NIE J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58(8): 2936-2947.

[20] CHEN Tao, CHEN Zhi-yong, SHAO Jian-bo, et al. Evolution of LPSO phases in a Mg-Zn-Y-Gd-Zr alloy during semi-continuous casting, homogenization and hot extrusion[J]. Materials & Design, 2018, 152: 1-9.

[21] CHEN Tao, CHEN Zhi-yong, SHAO Jian-bo, et al. The role of long-period stacking ordered phases in the deformation behavior of a strong textured Mg-Zn-Gd-Y-Zr alloy sheet processed by hot extrusion[J]. Materials Science and Engineering A, 2019, 750: 31-39.

[22] WU Xia, PAN Fu-sheng, CHENG Ren-ju, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy[J]. Materials Science and Engineering A, 2018, 726: 64-68.

[23] XU Chao, NAKATA T, QIAO Xiao-guang, et al. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy[J]. Scientific reports, 2017, 7: 40846.

[24] KIM J K, KO W S, SANDL€OBES S, et al. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy[J]. Acta Materialia, 2016, 112: 171-183.

[25] LI M, WANG X, FENG Q Y, et al. The effect of morphology of the long-period stacking ordered phase on mechanical properties of the Mg-7Gd-3Y-1Nd-1Zn-0.5Zr (wt.%) alloy[J]. Materials Characterization, 2017, 125: 123-133.

[26] ʯºé¼ª, µËÔËÀ´, ÕÅ ¿­, µÈ. Ndº¬Á¿¶ÔMg-6Gd-2.5Y-0.5ZrºÏ½ðÏÔ΢×éÖ¯ºÍÁ¦Ñ§ÐÔÄܵÄÓ°Ïì[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2017, 27(9): 1785-1793.

SHI Hong-ji, DENG Yun-lai, ZHANG Kai, et al. Effects of Nd addition on microstructure and mechanical properties of Mg-6Gd-2.5Y-0.5Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(9): 1785-1793.

[27] YU Zi-jian, XU Chao, MENG Jian, et al. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions[J]. Materials Science & Engineering A, 2018, 713: 234-243.

[28] Áõ ΰ. Mg-Gd-Y-ZnϵºÏ½ðʱЧÎö³öÐÐΪµÄÑо¿[D]. ±±¾©: ±±¾©ÓÐÉ«½ðÊôÑо¿×ÜÔº, 2019.

LIU Wei. Study on the precipitation behavior of Mg-Gd-Y-Zn based alloys during aging treatment[D]. Beijing: Beijing General Research Institute for Nonferrous Metals, 2019.

[29] ÀîÓÀ¾ü, ÕÅ ¿ü, ÀîÐ˸Õ, µÈ. ¼·Ñ¹±äÐζÔMg-5.0Y- 7.0Gd-1.3Nd-0.5ZrºÏ½ð×éÖ¯ºÍÐÔÄܵÄÓ°Ïì[J]. ÖйúÓÐÉ«½ðÊôѧ±¨, 2010, 20(9): 1692-1697.

LI Yong-jun, ZHANG Kui, LI Xing-gang, et al. Influence of extrusion on microstructures and mechanical properties of Mg-5.0Y-7.0Gd-1.3Nd-0.5Zr magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1692-1697.

[30] LI Ting, DU Zhi-wei, ZHANG Kui, et al. Characterisation of precipitates in a Mg-7Gd-5Y-1Nd-0.5Zr alloy aged to peak-ageing plateau[J]. Journal of Alloys and Compounds, 2013, 574: 174-180.

[31] LI Ting, ZHANG Kui, LI Xing-gang, et al. Dynamic precipitation during multi-axial forging of an Mg-7Gd-5Y-1Nd-0.5 Zr alloy[J]. Journal of Magnesium and Alloys, 2013, 1(1): 47-53.

[32] XU C, NAKATA T, FAN G H, et al. Microstructure and mechanical properties of extruded Mg-Gd-Y-Zn alloy with Mn or Zr addition[J]. Journal of Materials Science, 2019, 54(14): 10473-10488.

[33] ZHANG Jin-shan, ZHANG Wen-bo, BIAN Li-ping, et al. Study of Mg-Gd-Zn-Zr alloys with long period stacking ordered structures[J]. Materials Science and Engineering: A, 2013, 585: 268-276.

[34] BASU I, AI-AAMMAN T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium[J]. Acta Materialia, 2014, 67: 116-133.

[35] GB/T 36165¡ª2018. ½ðÊôƽ¾ù¾§Á£¶ÈµÄ²â¶¨µç×Ó±³É¢ÉäÑÜÉä(EBSD)·¨[S].

GB/T 36165¡ª2018. Determination of average grain size of metal electron backscatter diffraction (EBSD) method[S].

[36] XU C, NAKATA T, QIAO X G, et al. Ageing behavior of extruded Mg-8.2Gd-3.8Y-1.0Zn0.4Zr (wt.%) alloy containing LPSO phase and ¦Ã¡ä precipitates[J]. Scientific Reports, 2017, 7: 43391.

[37] CHI Y Q, XU C, QIAO X G, et al. Effect of trace zinc on the microstructure and mechanical properties of extruded Mg-Gd-Y-Zr alloy[J]. Journal of Alloys and Compounds, 2019, 789: 416-427.

[38] ROBSON J D, TWIER A M, LORIMER G W, et al. Effect of extrusion conditions on microstructure, texture, and yield asymmetry in Mg-6Y-7Gd-0.5 wt% Zr alloy[J]. Materials Science and Engineering A, 2011, 528(24): 7247-7256.

[39] YU Zi-jian, XU Chao, MENG Jian, et al. Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg-Gd-Y-(Nd/Zn)-Zr alloys[J]. Materials Science and Engineering A, 2019, 762: 138080.