中国有色金属学报

DOI: 10.11817/j.ysxb.1004.0609.2021-39795

稳恒强磁场对Cu-15Ni-8Sn合金凝固组织、微观偏析及显微硬度的影响

沈  喆1, 2,任  朗1, 2,林中泽1, 2,朱家乐1, 2,钟云波1, 2

(1. 上海大学 材料科学与工程学院,上海 200444;

2. 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室,上海 200444)

摘 要:

研究稳恒强磁场对Cu-15Ni-8Sn合金凝固过程中微观组织形貌、枝晶主干处成分偏析及显微硬度的影响规律。结果表明:对比无磁场条件,2 T强磁场对Cu-15Ni-8Sn合金试样微观组织与枝晶主干处微观偏析的影响并不大。但当磁感应强度提高至4~6 T时,试样枝晶数量明显减少,尺寸显著粗化;且枝晶主干处Sn元素含量明显下降,Ni元素含量则明显升高。此外,强磁场的施加能显著提高Cu-15Ni-8Sn合金枝晶主干的显微硬度,对比无磁场条件,施加6 T强磁场时合金中枝晶主干处显微硬度上升74.4%。强磁场对Cu-Ni-Sn合金微观偏析及显微硬度的影响主要与磁场在合金凝固过程中对Sn、Ni等元素扩散的影响有关。

关键词:

Cu-15Ni-8Sn合金纵向强磁场微观偏析成分分布

文章编号:1004-0609(2021)-05-1134-09       中图分类号:TF11.31       文献标志码:A

引文格式:沈  喆, 任  朗, 林中泽, 等. 稳恒强磁场对Cu-15Ni-8Sn合金凝固组织、微观偏析及显微硬度的影响[J]. 中国有色金属学报, 2021, 31(5): 1134-1142. DOI: 10.11817/j.ysxb.1004.0609.2021-39795

SHEN Zhe, REN Lang, LIN Zhong-ze, et al. Effect of static high magnetic field on solidification structure, microsegregation and microhardness of Cu-15Ni-8Sn alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(5): 1134-1142. DOI: 10.11817/j.ysxb.1004.0609.2021-39795

金属材料的性能最终取决于其微观组织及成分。近几十年来,研究人员采用定向凝固[1]、快速凝固[2]、深过冷[3]、微重力[4]和外加物理场[5-6]等手段来实现对材料微观组织及成分的优化与调控。强磁场能显著影响金属凝固过程中的熔体流动[7-8]、原子扩散[9-10]、第二相迁移和分布[11-12]以及晶体取向[13-14]等行为,进而影响材料的组织形貌及成分偏析[15-19]。HOU等[15]提出强磁场的施加有助于细化Ni-Mn-Ga合金定向凝固组织,减少微观偏析。HE等[16, 19]研究了强磁场对Al-Cu、Ni-Cr等合金定向凝固过程中微观偏析的影响,提出强磁场对合金微观偏析的影响与其生长界面形貌有关。对于胞状或枝晶状界面生长的合金而言,强磁场能有效减少其微观偏析,而对于平界面生长的合金来说,强磁场则会提高其微观偏析程度。由此可见,合金凝固过程中的微观偏析行为受诸多因素影响,而强磁场对这些因素的影响规律尚未完全清晰,其相关机制需要进一步研究。

Cu-15Ni-8Sn合金具有很高的屈服强度、优良的抗应力松弛性能,是新一代高强弹性铜合金的代表[20-22]。但由于Sn熔点较低,凝固间隔极大,在传统凝固条件下,Cu-Ni-Sn合金极易形成粗大的Cu枝晶,这将导致该合金凝固时存在明显的宏/微观偏析。为解决该合金制备的偏析问题,国内外学者从不同角度进行了研究:从凝固速度入手,提出快速凝固[23]、等离子喷涂[24]等方法来解决Cu-Ni-Sn合金的成分偏析问题,但该方法存在着试样尺寸的限制;从粉末冶金角度出发,提出了机械合金化[25]方法来实现Cu、Ni、Sn这3种元素的合金化,从而减少偏析,但该方法存在着易氧化夹杂、工艺复杂等问题。研究表明[9-10],强磁场对合金凝固过程中原子扩散具有显著的影响,而目前关于强磁场对Cu-Ni-Sn合金凝固微观组织及成分偏析影响的研究尚未见深入报道。因此,本文提出从合金凝固过程中原子扩散角度,研究强磁场对Cu-Ni-Sn合金凝固过程中组织粗化、成分偏析及显微硬度的影响规律,并对其相关影响机制进行讨论。

1  实验

本实验研究对象为Cu-15Ni-8Sn合金,以电解纯Cu(99.99%)、纯Ni(99.99%)及纯Sn(99.99%)为原料,按质量比m(Cu):m(Ni):m(Sn)=77:15:8的配比在真空感应熔炼炉中熔配。随后,将熔配好的Cu-15Ni-8Sn合金铸锭线切割制成直径8 mm、长10 mm的试样,并将其置于强磁场下凝固加热炉中,如图1(a)所示。经30 min,加热到1200 ℃并保温1 h,并随炉冷却,温度制度如图1(c)所示。本实验在不同磁感应强度(0 T、2 T、4 T、6 T)下进行。待实验结束后,对试样进行横/纵截面切割(见图1(b)),经磨抛加工后,使用光学显微镜、扫描电镜及显微硬度仪等分别考察了不同磁感应强度对Cu-15Ni-8Sn合金凝固微观组织、成分分布及显微硬度的影响。其中成分分布测定方法如图2所示,随机选取试样边缘处枝晶 (见图2(a)中黄框),在该枝晶主干上,以20×20的矩阵进行EDS点扫描,测试该区域内400个点的成分,并将所得数据按照Rank Sort方法进行统计和分析[26-27]。显微硬度测试采用维氏硬度仪对Cu-15Ni-8Sn合金枝晶主干处硬度进行测定,测试载荷为2 N,加载时间为20 s。每个试样测试10次,取其平均值。

2  结果与分析

2.1  微观组织相组成及成分分布

Cu-15Ni-8Sn合金凝固微观组织主要有两相组成:枝晶主干的α-Cu固溶相(见黑色区域C)和枝晶间的富Sn相(见白色区域A),如图3(b)所示。在两相之间还存在一个灰色的过渡区域(见区域B)。表1列出了图3(b)中A、B、C这3个不同区域的元素含量。图3(c)所示为图3(b)的元素面分布图。从图中可以看出,枝晶主干即α-Cu固溶相中Sn含量较少,而枝晶间的富Sn相中Ni、Sn两种元素含量较高,这与表1中的结果相一致。因此,通过元素含量的测定,可以初步区分Cu-15Ni-8Sn合金微观组织的各区域。

图1  Cu-15Ni-8Sn合金强磁场下凝固实验方案

Fig. 1  Experimental scheme for solidification of Cu-15Ni-8Sn alloy in high magnetic field

图2  Cu-15Ni-8Sn合金枝晶主干处微观偏析及显微硬度检测方法

Fig. 2  Determination method for microsegregation and microhardness on dendrite trunk of Cu-15Ni-8Sn alloy

图3  Cu-15Ni-8Sn合金试样微观组织、相组成及成分分布

Fig. 3  Microstructure(a), phase composition(b) and element distribution of Cu(c), Ni(c′) and Sn(c″) for Cu-15Ni-8Sn alloy

表1  Cu-15Ni-8Sn合金不同区域元素含量

Table 1  Element contents in different regions of Cu-15Ni-8Sn alloy

2.2  强磁场对微观组织的影响

图4所示为不同磁感应强度下Cu-15Ni-8Sn合金的微观组织。从图4可以看出,在0 T时,试样呈现为致密的枝晶组织,且具有明显沿径向生长的趋势,这是由于径向上存在一定的温度梯度。当施加2 T磁场后,枝晶仍然呈现沿径向生长的趋势,这与无磁场条件下的微观组织一致。但随着磁感应强度的提高(4 T),试样横截面枝晶数目开始明显较少,枝晶组织开始粗化,但纵截面微观组织未有明显差异。当磁感应强度进一步提高到6 T时,不仅试样横截面微观组织出现了明显粗化;纵截面组织中枝晶数目也开始减少,枝晶尺寸粗化。

图4  不同磁感应强度下Cu-15Ni-8Sn合金的凝固微观组织

Fig. 4  Solidification microstructures of Cu-15Ni-8Sn alloy under different magnetic flux densities

2.3  强磁场对枝晶成分的影响

强磁场能明显促进Cu-15Ni-8Sn合金凝固过程中枝晶组织的粗化,而枝晶组织又与成分偏析关系密切。因此,本实验采用对枝晶主干处点扫描测成分的方法检测了强磁场对Cu-15Ni-8Sn合金凝固组织微观偏析的影响,结果如图5所示。从图5中可以看出,枝晶主干即α-Cu固溶体相出现在图片中心处,且该区域为贫Sn区,Sn含量在2.3%~7%之间。枝晶间隙即富Sn相出现在图片的四角,该区域内Sn含量最高,约为37.5%,这与表1中各区域成分测定结果一致。Sn含量在枝晶主干与枝晶间存在的过渡区域中呈现由枝晶主干到枝晶间隙逐渐上升的趋势。对比不同磁感应强度下枝晶主干位置处Sn含量的变化可以看出,在0 T磁场下(见图5(a1)),α-Cu固溶体相中最低Sn含量为4.1%;而在施加了2 T磁场后,该区域中最低Sn含量下降为3.7%;随磁感应强度的进一步提高(至6 T),该区域中最低Sn含量下降到了2.3%。这表明强磁场的施加大大降低了枝晶主干区域内Sn元素的含量。

图5  不同磁感应强度下微观组织中Sn、Ni元素分布

Fig. 5  Distribution of Sn and Ni element on solidification microstructure under different magnetic flux densities

Sn含量在枝晶主干、过渡区及枝晶间3个区域内呈现逐渐上升的趋势,而不同区域内Ni含量的检测结果与Sn含量则并不相同。从图5中可以看到,在枝晶间即富Sn相区域内,Ni含量最高,约为30%。在枝晶主干即α-Cu区域内,Ni含量次之,约为14%~20%。过渡区域内Ni含量最低。对比图5(a2)、(b2)、(c2)及(d2)可以看出,随着磁感应强度的提高,Ni含量为14%~20%的区域呈现明显扩大的趋势。这表明强磁场的施加能有效提高枝晶主干处和过渡区域内Ni元素的含量。

为进一步量化研究强磁场对Cu-15Ni-8Sn合金凝固过程中枝晶微观偏析的影响,本文对微观枝晶不同位置处的EDS测试结果进行了排序,结果如图6所示。图6(a)所示为不同磁感应强度下各区域内Sn元素含量的对比图。从图5中可以看出,枝晶主干区域内Sn含量≤7%,而Ni含量约为14%~20%。因此,只需对比不同磁感应强度对Sn含量≤7%及Ni含量在14%~20%之间的两个区域中Sn、Ni元素含量的影响,即可推测不同磁场作用下Cu-15Ni-8Sn合金枝晶主干处微观偏析的演变行为。从图6(a)中黄色区域可以看出,施加2T磁场对枝晶主干处Sn含量影响不大。而当磁感应强度提高到4 T时,枝晶主干位置处Sn含量明显降低。进一步提升磁感应强度至6 T时,图6(a)中绿色曲线所示,枝晶主干位置处Sn含量略有下降。从图6(b)可以得到,随着磁场的施加,枝晶主干区域内Ni含量逐渐上升。由此可见,强磁场的施加确实能显著改变枝晶主干位置处Sn、Ni元素的含量。在强磁场的作用下,枝晶主干处Sn元素含量呈现降低的趋势,而Ni元素含量则逐渐上升。这表明,在凝固过程中,磁场的施加影响了Sn、Ni元素的溶质再分配过程。前人研究表明,磁场对固液界面处元素扩散存在着显著的影响[28-30]。因此,有理由相信,本实验中不同磁感应强度下枝晶主干处Sn、Ni元素含量的变化是由于磁场对Sn、Ni元素固液扩散的不同影响作用导致的。从结果来看,施加磁场后,枝晶主干处Sn元素含量的下降是由于磁场促进了凝固过程中Sn元素的析出,而枝晶主干处Ni元素含量的上升,则主要归因于磁场抑制了凝固过程中Ni元素的扩散。

图6  不同磁感应强度下微观组织中Sn、Ni元素含量排序

Fig. 6  Ordering of Sn and Ni contents in solidification microstructure under different magnetic flux densities

2.4  强磁场对枝晶主干显微硬度的影响

为进一步证明强磁场对枝晶主干处Sn、Ni元素含量的影响,本文对不同磁感应强度下枝晶主干处显微硬度进行了测定,结果如图7所示。当无磁场时,试样枝晶主干处硬度为131 HV0.2;而当施加2 T磁场以后,试样枝晶主干处硬度上升到142.23HV0.2。从图6可以看出,随着2 T磁场的施加,枝晶主干处Sn含量并没有出现明显的下降,而Ni含量则有明显的上升。因此,2 T磁场下测得的枝晶主干显微硬度的上升主要来源于α-Cu中Ni元素固溶度的上升。随着磁感应强度的进一步上升,枝晶主干处的硬度也随之提高。在6 T磁场下,枝晶主干处的显微硬度达到了最大值,为228.43 HV0.2。对比无磁场条件,6 T磁场时合金中枝晶主干处显微硬度上升了74.4%。枝晶主干处显微硬度与组织中Cu、Ni、Sn等元素的含量息息相关,强磁场的施加能显著提高枝晶主干处Ni元素的含量,降低Sn元素的含量,而Cu-Ni-Sn合金中Ni含量的上升与Sn含量的下降都能促使枝晶主干处显微硬度的提高,这与图7中的检测结果一致。

图7  不同磁感应强度对枝晶主干处显微硬度的影响

Fig. 7  Effect of different magnetic flux densities on microhardness of dendritic trunk

3  结论

1) 在Cu-15Ni-8Sn合金凝固过程中施加稳恒强磁场(≥4 T),能明显促进凝固枝晶组织的粗化。

2) 强磁场能显著影响Cu-15Ni-8Sn合金枝晶主干处Sn、Ni等元素的含量及分布。随着磁感应强度的上升,枝晶主干处Sn元素含量逐渐下降,而Ni元素含量则逐渐上升。这种强磁场诱导的Sn、Ni等元素不同的微观偏析行为应归因于磁场对Sn、Ni元素固液扩散影响的不同。

3) 强磁场能显著提高Cu-15Ni-8Sn合金枝晶主干的显微硬度,这主要与强磁场作用下枝晶主干处Sn含量的下降和Ni含量的上升有关。

REFERENCES

[1] CHEN G, PENG Y, ZHENG G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016, 15(8): 876-881.

[2] ROEHLING J D, COUGHLIN D R, GIBBS J W, et al. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy[J]. Acta Materialia, 2017, 131: 22-30.

[3] WANG J, LI J, HU R, et al. Anomalous magnetism and normal field instability in supercooled liquid cobalt[J]. Applied Physics Letters, 2014, 105: 144101.

[4] WU Y, WANG W, CHANG J, et al. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys[J]. Journal of Alloys and Compounds, 2018, 763: 808-814.

[5] SHEN Z, PENG M, ZHU D, et al. Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification[J]. Journal of Materials Science & Technology, 2019, 35(4): 568-577.

[6] 王 强, 董 蒙, 孙金妹, 等. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.

WANG Qiang, DONG Meng, SUN Jin-mei, et al. Control of solidification process and fabrication of functional materials with high magnetic fields[J]. Acta Metallurgica Sinica, 2018, 54(5): 742-756.

[7] LI X, FAUTRELLE Y, GAGNOUD A, et al. Effect of a weak transverse magnetic field on solidification structure during directional solidification[J]. Acta Materialia, 2014, 64(2): 367-381.

[8] LEHMANN P, MOREAU R, CAMEL D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field[J]. Acta Materialia, 1998, 46(11): 4067-4079.

[9] FAN L, ZHONG Y, XU Y, et al. Promoted diffusion mechanism of Fe2.7wt.%Si-Fe10wt.%Si couples under magnetic field by atomic-scale observations[J]. Scientific Reports, 2019, 9(1): 19920.

[10] ZHENG T, SHI P, SHEN Z, et al. Diffusion-controlled mechanical property-enhancement of Al-20wt.%Si ribbon annealed under high static magnetic fields, from the microscale to the atomic scale[J]. Materials & Design, 2020, 188: 108476.

[11] REN Z, LI X, WANG H, et al. The segregated structure of MnBi in Bi-Mn alloy solidified under a high magnetic field[J]. Materials Letters, 2004, 58(27/28): 3405-3409.

[12] YASUDA H, OHNAKA I, FUJIMOTO S, et al. Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scripta Materialia, 2006, 54(4): 527-532.

[13] LIU C, ZHONG Y, SHEN Z, et al. Magnetic field-dependent microstructure evolution and magnetic property of Fe-6.5Si-0.05B alloy during solidification[J]. Journal of Materials Research, 2019, 34(24): 4076-4084.

[14] ZHENG T, ZHONG Y, LEI Z, et al. Effects of high static magnetic field on crystal orientation and magnetic property of Bi-5wt.% Zn alloys[J]. Materials Letters, 2015, 140: 68-70.

[15] HOU L, DAI Y, FAUTRELLE Y, et al. Evolution of microstructure and microsegregation in Ni-Mn-Ga alloys directionally solidified under axial magnetic field[J]. Journal of Alloys and Compounds, 2018, 758: 54-61.

[16] HE S, LI C, GUO R, et al. Evolution of microsegregation in directionally solidified Al-Cu alloys under steady magnetic field[J]. Journal of Alloys and Compounds, 2019, 800: 41-49.

[17] LI X, GAGNOUD A, REN Z, et al. Effect of strong magnetic field on solid solubility and microsegregation during directional solidification of Al-Cu alloy[J]. Journal of Materials Research, 2013, 28(20): 2810-2818.

[18] 钟 华, 李传军, 王 江, 等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响[J]. 金属学报, 2016, 52(5): 575-582.

ZHONG Hua, LI Chuan-jun, WANG Jiang, et al. Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy[J]. Acta Metallurgica Sinica, 2016, 52(5): 575-582.

[19] HE S, LI C, YUAN Z, et al. Magnetic-field-induced liquid-solid interface transformation and its effect on microsegregation in directionally solidified Ni-Cr alloy[J]. Metallurgical and Materials Transactions A, 2020, 51(9): 4592-4601.

[20] ZHAO J, NOTIS M R. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy[J]. Acta Materialia, 1998, 46(12): 4203-4218.

[21] 祁红璋, 安建军, 严 彪. Cu-15Ni-8Sn合金的开发与应用现状[J]. 金属功能材料, 2009, 16(4): 57-60.

QI Hong-zhang, AN Jian-jun, YAN Biao. Current application and development of Cu-15Ni-8Snalloy[J]. Metallic Functional Materials, 2009, 16(4): 57-60.

[22] 韩 芳, 从善海, 汪旭超. 不同冷却条件对铸态Cu-15Ni-8Sn合金析出物的影响[J]. 金属热处理, 2012, 37(6): 17-19.

HAN Fang, CONG Shan-hai, WANG Xu-chao. Influence of different cooling conditions on segregation of Cu-15Ni-8Sn alloy[J]. Heat Treatment of Metals, 2012, 37(6): 17-19.

[23] 刘施峰, 汪明朴, 李 周, 等. 真空熔铸法和快速凝固法制备的Cu-15Ni-8Sn-XSi合金组织研究[J]. 矿冶工程,2005, 25(3): 73-80.

LIU Shi-feng, WANG Ming-pu, LI Zhou, et al. A study on cast structure of Cu-15Ni-8Sn-XSi alloys prepared by vacuum melting and rapid solidification[J]. Mining and Metallurgical Engineering, 2005, 25(3): 73-80.

[24] XIAO J, ZHANG W, LIU L, et al. Microstructure and tribological properties of plasma sprayed Cu-15Ni-8Sn coatings[J]. Surface and Coatings Technology, 2018, 337: 159-167.

[25] 曾跃武, 李志章. 机械合金化和熔炼法制备的Cu-15Ni-8Sn合金的Spinodal分解[J]. 中国有色金属学报, 2001, 11(6): 1059-1063.

ZENG Yue-wu, LI Zhi-zhang. Spinodal decomposition in Cu-15Ni-8Sn alloys prepared by mechanical alloying and casting[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(6): 1059-1063.

[26] GANESAN M, DYE D, LEE P D. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings[J]. Metallurgical & Materials Transactions A, 2005, 36(8): 2191-2204.

[27] GANESAN M, THUINET L, DYE D, et al. Quantification of microsegregation in cast Al-Si-Cu alloys[J]. Metallurgical and Materials Transactions B, 2007, 38(4): 557-566.

[28] LI D, WANG Q, LIU T, et al. Growth of diffusion layers at liquid Al-solid Cu interface under uniform and gradient high magnetic field conditions[J]. Materials Chemistry and Physics, 2009, 117(2/3): 504-510.

[29] LI D, WANG Q, LI G, et al. High magnetic field controlled interdiffusion behavior at Bi-Bi0.4Sb0.6 liquid/solid interface[J]. Journal of Materials Science, 2009, 44(8): 1918-1922.

[30] WATANABE Y, HAGIO T, KOBAYASHI R, et al. Phase formation of a solid-liquid Mn-Ga diffusion couple under a magnetic field[J]. Materials Transactions, 2019, 60(10): 2195-2198.

Effect of static high magnetic field on solidification structure, microsegregation and microhardness of Cu-15Ni-8Sn alloy

SHEN Zhe1, 2, REN Lang1, 2, LIN Zhong-ze1, 2, ZHU Jia-le1, 2, ZHONG Yun-bo1, 2

(1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;

2. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China)

Abstract: The effect of static high magnetic field on the microstructure morphology, dendrite microsegregation and microhardness during the solidification of Cu-15Ni-8Sn alloy was studied. The results show that the 2 T high magnetic field has almost no effect on the microstructure or dendrite microsegregation of Cu-15Ni-8Sn alloy comparing with the condition of no magnetic field. While when the magnetic field increases to 4-6 T, the number of dendrites is significantly reduced, while the size of dendrites is significantly coarsened, and the content of Sn in the trunk of the dendrites is significantly reduced, while the content of Ni in the trunk of the dendrites is significantly increased. In addition, the application of high magnetic field can significantly increase the microhardness of dendrite trunk in Cu-15Ni-8Sn alloy. Comparing with the case without magnetic field, the magnetic field of 6 T increases the microhardness of dendrite trunk by 74.4%. The effect of static high magnetic field on the microsegregation and microhardness of Cu-Ni-Sn alloy is mainly related to the effect of magnetic field on the diffusion of Sn and Ni during solidification process.

Key words: Cu-15Ni-8Snalloy; high magnetic field; microsegregation; composition distribution

Foundation item: Projects(2016YFB0301401, 2016YFB0300401) supported by the National Key Research and Development Program of China; Projects(U1860202, U1732276, 50134010, 51704193, 51904184) supported by the National Natural Science Foundation of China

Received date: 2020-10-01; Accepted date: 2020-11-13

Corresponding author: ZHONG Yun-bo; Tel: +86-21-66136562; E-mail: yunboz@shu.edu.cn

(编辑  龙怀中)

基金项目:国家重点研发计划资助项目(2016YFB0301401,2016YFB0300401);国家自然科学基金资助项目(U1860202,U1732276,50134010, 51704193,51904184)

收稿日期:2020-10-01;修订日期:2020-11-13

通信作者:钟云波,教授,博士;电话:021-66136562;E-mail:yunboz@shu.edu.cn

摘  要:研究稳恒强磁场对Cu-15Ni-8Sn合金凝固过程中微观组织形貌、枝晶主干处成分偏析及显微硬度的影响规律。结果表明:对比无磁场条件,2 T强磁场对Cu-15Ni-8Sn合金试样微观组织与枝晶主干处微观偏析的影响并不大。但当磁感应强度提高至4~6 T时,试样枝晶数量明显减少,尺寸显著粗化;且枝晶主干处Sn元素含量明显下降,Ni元素含量则明显升高。此外,强磁场的施加能显著提高Cu-15Ni-8Sn合金枝晶主干的显微硬度,对比无磁场条件,施加6 T强磁场时合金中枝晶主干处显微硬度上升74.4%。强磁场对Cu-Ni-Sn合金微观偏析及显微硬度的影响主要与磁场在合金凝固过程中对Sn、Ni等元素扩散的影响有关。

[1] CHEN G, PENG Y, ZHENG G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016, 15(8): 876-881.

[2] ROEHLING J D, COUGHLIN D R, GIBBS J W, et al. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy[J]. Acta Materialia, 2017, 131: 22-30.

[3] WANG J, LI J, HU R, et al. Anomalous magnetism and normal field instability in supercooled liquid cobalt[J]. Applied Physics Letters, 2014, 105: 144101.

[4] WU Y, WANG W, CHANG J, et al. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys[J]. Journal of Alloys and Compounds, 2018, 763: 808-814.

[5] SHEN Z, PENG M, ZHU D, et al. Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification[J]. Journal of Materials Science & Technology, 2019, 35(4): 568-577.

[6] 王 强, 董 蒙, 孙金妹, 等. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.

WANG Qiang, DONG Meng, SUN Jin-mei, et al. Control of solidification process and fabrication of functional materials with high magnetic fields[J]. Acta Metallurgica Sinica, 2018, 54(5): 742-756.

[7] LI X, FAUTRELLE Y, GAGNOUD A, et al. Effect of a weak transverse magnetic field on solidification structure during directional solidification[J]. Acta Materialia, 2014, 64(2): 367-381.

[8] LEHMANN P, MOREAU R, CAMEL D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field[J]. Acta Materialia, 1998, 46(11): 4067-4079.

[9] FAN L, ZHONG Y, XU Y, et al. Promoted diffusion mechanism of Fe2.7wt.%Si-Fe10wt.%Si couples under magnetic field by atomic-scale observations[J]. Scientific Reports, 2019, 9(1): 19920.

[10] ZHENG T, SHI P, SHEN Z, et al. Diffusion-controlled mechanical property-enhancement of Al-20wt.%Si ribbon annealed under high static magnetic fields, from the microscale to the atomic scale[J]. Materials & Design, 2020, 188: 108476.

[11] REN Z, LI X, WANG H, et al. The segregated structure of MnBi in Bi-Mn alloy solidified under a high magnetic field[J]. Materials Letters, 2004, 58(27/28): 3405-3409.

[12] YASUDA H, OHNAKA I, FUJIMOTO S, et al. Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scripta Materialia, 2006, 54(4): 527-532.

[13] LIU C, ZHONG Y, SHEN Z, et al. Magnetic field-dependent microstructure evolution and magnetic property of Fe-6.5Si-0.05B alloy during solidification[J]. Journal of Materials Research, 2019, 34(24): 4076-4084.

[14] ZHENG T, ZHONG Y, LEI Z, et al. Effects of high static magnetic field on crystal orientation and magnetic property of Bi-5wt.% Zn alloys[J]. Materials Letters, 2015, 140: 68-70.

[15] HOU L, DAI Y, FAUTRELLE Y, et al. Evolution of microstructure and microsegregation in Ni-Mn-Ga alloys directionally solidified under axial magnetic field[J]. Journal of Alloys and Compounds, 2018, 758: 54-61.

[16] HE S, LI C, GUO R, et al. Evolution of microsegregation in directionally solidified Al-Cu alloys under steady magnetic field[J]. Journal of Alloys and Compounds, 2019, 800: 41-49.

[17] LI X, GAGNOUD A, REN Z, et al. Effect of strong magnetic field on solid solubility and microsegregation during directional solidification of Al-Cu alloy[J]. Journal of Materials Research, 2013, 28(20): 2810-2818.

[18] 钟 华, 李传军, 王 江, 等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响[J]. 金属学报, 2016, 52(5): 575-582.

ZHONG Hua, LI Chuan-jun, WANG Jiang, et al. Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy[J]. Acta Metallurgica Sinica, 2016, 52(5): 575-582.

[19] HE S, LI C, YUAN Z, et al. Magnetic-field-induced liquid-solid interface transformation and its effect on microsegregation in directionally solidified Ni-Cr alloy[J]. Metallurgical and Materials Transactions A, 2020, 51(9): 4592-4601.

[20] ZHAO J, NOTIS M R. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy[J]. Acta Materialia, 1998, 46(12): 4203-4218.

[21] 祁红璋, 安建军, 严 彪. Cu-15Ni-8Sn合金的开发与应用现状[J]. 金属功能材料, 2009, 16(4): 57-60.

QI Hong-zhang, AN Jian-jun, YAN Biao. Current application and development of Cu-15Ni-8Snalloy[J]. Metallic Functional Materials, 2009, 16(4): 57-60.

[22] 韩 芳, 从善海, 汪旭超. 不同冷却条件对铸态Cu-15Ni-8Sn合金析出物的影响[J]. 金属热处理, 2012, 37(6): 17-19.

HAN Fang, CONG Shan-hai, WANG Xu-chao. Influence of different cooling conditions on segregation of Cu-15Ni-8Sn alloy[J]. Heat Treatment of Metals, 2012, 37(6): 17-19.

[23] 刘施峰, 汪明朴, 李 周, 等. 真空熔铸法和快速凝固法制备的Cu-15Ni-8Sn-XSi合金组织研究[J]. 矿冶工程,2005, 25(3): 73-80.

LIU Shi-feng, WANG Ming-pu, LI Zhou, et al. A study on cast structure of Cu-15Ni-8Sn-XSi alloys prepared by vacuum melting and rapid solidification[J]. Mining and Metallurgical Engineering, 2005, 25(3): 73-80.

[24] XIAO J, ZHANG W, LIU L, et al. Microstructure and tribological properties of plasma sprayed Cu-15Ni-8Sn coatings[J]. Surface and Coatings Technology, 2018, 337: 159-167.

[25] 曾跃武, 李志章. 机械合金化和熔炼法制备的Cu-15Ni-8Sn合金的Spinodal分解[J]. 中国有色金属学报, 2001, 11(6): 1059-1063.

ZENG Yue-wu, LI Zhi-zhang. Spinodal decomposition in Cu-15Ni-8Sn alloys prepared by mechanical alloying and casting[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(6): 1059-1063.

[26] GANESAN M, DYE D, LEE P D. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings[J]. Metallurgical & Materials Transactions A, 2005, 36(8): 2191-2204.

[27] GANESAN M, THUINET L, DYE D, et al. Quantification of microsegregation in cast Al-Si-Cu alloys[J]. Metallurgical and Materials Transactions B, 2007, 38(4): 557-566.

[28] LI D, WANG Q, LIU T, et al. Growth of diffusion layers at liquid Al-solid Cu interface under uniform and gradient high magnetic field conditions[J]. Materials Chemistry and Physics, 2009, 117(2/3): 504-510.

[29] LI D, WANG Q, LI G, et al. High magnetic field controlled interdiffusion behavior at Bi-Bi0.4Sb0.6 liquid/solid interface[J]. Journal of Materials Science, 2009, 44(8): 1918-1922.

[30] WATANABE Y, HAGIO T, KOBAYASHI R, et al. Phase formation of a solid-liquid Mn-Ga diffusion couple under a magnetic field[J]. Materials Transactions, 2019, 60(10): 2195-2198.