中国有色金属学报

DOI:10.19476/j.ysxb.1004.0609.2019.10.17

氮等离子体预辐照对钨中氘滞留的影响

张瀚文1, 2,吴有智1,乔  丽2,王  鹏2

(1. 兰州理工大学 材料科学与工程学院,兰州 730050;

2. 中国科学院 兰州化学物理研究所固体润滑国家重点实验室,兰州 730000 )

摘 要:

利用直线等离子体模拟装置开展氮和氘等离子体注入钨的实验,采用微分干涉差显微镜(DIC)、场发射扫描电子显微镜(SEM)结合聚焦离子束(FIB)以及X射线光电子能谱仪,分别研究氮和氘等离子体辐照前后钨表面成分、形貌和微观组织结构的变化,采用超高真空热脱附系统对氮等离子体预先辐照后钨中氘的捕获状态和滞留总量进行分析。结果表明:经氮辐照后,钨样品表面形成了氮化钨相,进一步注入氘等离子体后其表面起泡增多,氘在钨中的滞留总量升高。这是由于氮化钨相的形成阻碍了氘原子沿表面方向扩散逃逸,使氘原子在钨的亚表面过饱和聚集,导致钨中氘致起泡现象更加明显。

关键词:

氘滞留等离子体辐照

文章编号:1004-0609(2019)-10-2356-08       中图分类号:TL46       文献标志码:A

钨(W),因具有高熔点、高溅射阈值和低燃料滞留等优点,被视为未来托卡马克装置上最有前景的面向等离子体材料(Plasma facing materials, PFMs)[1-4]。在热核聚变反应过程中,PFMs不仅要受到各种粒子的轰击,还要承受高能热流辐射[5]。因此,寻求降低偏滤器靶板温度的方法显得十分重要。研究发现,通过注入氮(N)、氩(Ar)和氖(Ne)等杂质气体在偏滤器处吸收热辐射,实现能量在较宽的范围内分散,可以有效地降低靶板温度[6]

国内外学者在磁约束聚变装置上已经开展了大量关于杂质气体辐射偏滤器的研究工作,如日本原子能研究所在JT-60U托卡马克装置上辐射Ne气体,发现Ne的加入不仅增强了辐射份额,同时还改善了芯部等离子体的约束并有效地降低了到达靶板的热流,获得更好的等离子体稳定性[7]。美国通用原子能公司在DIII-D装置上开展Ar和Ne杂质气体辐射,实验结果表明,杂质辐射时作用在偏滤器的热流明显减小,且聚集在偏滤器上的杂质原子能够有效地增强偏滤器辐射[8]。德国马普等离子体研究所在ASDEX Upgrade托卡马克装置上开展N2辐射实验,结果表明:N2的注入改善了等离子体的约束,同时提高了运行参数,并且显示出了良好的冷却效果[9]。中国科学院等离子体物理研究所在EAST托卡马克装置上开展纯Ar注入实验,有效地降低了靶板热流,改善了偏滤器内外的不对称性并缓解了边界局域模(Edge localized modes, ELMs)对偏滤器靶板材料的损伤[10]。由此可 见,杂质气体的辐射能够有效地降低偏滤器靶板温度。然而使用注入杂质气体降低偏滤器靶板温度时,必须考虑这种杂质气体对PFMs服役的影响。基于此,本文使用直线等离子体源(Linear experimental plasma system, LEPS),以氮等离子体预辐照钨材料实验模拟托卡马克中注入杂质辐射偏滤器的过程,从而考察注入杂质等离子体对偏滤器钨材料的燃料滞留行为的影响。

1  实验

1.1  样品的选取和等离子体辐照

使用纯度为99.99%的扎制态W板,将W板切割为10 mm×10 mm×1 mm的方形薄片。在进行等离子体辐照实验前,对镜面抛光处理后的W样品进行去应力退火处理,退火条件为:真空石英管真空度达1×10-5 Pa以下,温度为1173 K保温60 min。

N和D等离子体辐照实验均在自行搭建的直线等离子体源(Linear experimental plasma system, LEPS)上进行,设备相关参数详见参考文献[11]。等离子体辐照时,LEPS装置真空度为5×10-4 Pa以下。实验过程中,先在真空室中通入D2或N2,将2.45GHz微波通过波导管经Al2O3陶瓷窗口引入真空室;真空室外部通过配加通电线圈以提供磁场,微波与磁场发生共振,在其轴向产生直线型约束等离子体;通过改变基底偏压调节轰击样品的离子能量。

采用朗缪尔探针诊断等离子体主要参数。图1(a)和(b)所示分别为N、D等离子体截面密度检测曲线。从图1中可以看出,N、D等离子体束流密度变化基本呈正态分布。使用的N等离子体辐照能量为57 eV/N,平均束流密度为6.3×1020 N/(m2·s)。有研究表明,N等离子体辐照W材料时,通量达到1×1023 N/m2时,N在W中的注入量达到饱和[12]。本文选取N等离子体辐照通量为9.8×1023 N/m2;在实际偏滤器部位与等离子体相互作用时,其主要特点是低能大束流,偏滤器部位等离子体能量大约在几到几十eV[13],因此选用D等离子体注入能量为71 eV/D。如图1(b)所示,探针测试D等离子体平均束流截面量为1.2×1021 D/(m2·s)。通过改变D等离子体的辐照通量(3.6×1023~2.2×1025 D/m2)来考察N等离子体预辐照对不同通量D注入W样品的形貌及滞留行为的影响。有相关文献报道,使用第一性原理模拟计算氢及其同位素的释放温度在400~500 K之间[14],为更好地研究D在W中的滞留行为,故实验选取基底温度为400 K。

图1  朗缪尔探针诊断样品盘上不同位置处对应的等离子体束流密度

Fig. 1  Property of nitrogen or deuterium plasma at different areas diagnosed by Langmuir probe

1.2  表面结构、形貌及滞留现象研究

通过微分干涉差显微镜(Differential interference contrast microscopy, DIC)(Zeiss Axio Imager A2m)分析等离子体辐照前后的W样品表面形貌。利用聚焦离子束(Focused ion beam, FIB)结合场发射扫描电子显微镜(Scanningelectronmicroscopy, SEM)(双束FIB-SEM Tescan LYRA 3X MU)分析等离子体辐照W样品的表面和断面形貌。FIB-SEM分析时,首先使用SEM进行观察,调节电镜工作距离,通过SEM成像。然后,选定适当的切面位置,旋转样品台使离子束与样品所固定平面垂直,使用30 keV的Ga+束对样品选取位置进行切割,后通过SEM对倾斜55°的样品进行观察。使用X射线光电子能谱仪(XPS,PHI-5720)分析N预辐照对W材料表面结构与成键情况,X射线源采用Al Kα (1486.71 eV),能谱采用C(1s)(284.8 eV)进行校正。分峰拟合采用高斯/劳伦特斯方程最小均方差Shirley消背底方法。

利用超高真空热脱附系统(真空度在1×10-5 Pa以下)研究等离子体辐照后W中燃料(D)滞留与脱附行为。实验中,程控加热真空管式炉中的样品,随着温度的升高,样品表面的气体开始脱附,在加热过程的同时采用四级质谱仪原位检测不同质量数的电流信号,并对释放出的气体元素进行区分,根据检测出的电流信号判断氢及其氢的同位素在样品中的捕获状态及滞留量[15-17]。释放的HD和D2分子(质量数为3和4)通常用来定量地评价D在样品内的滞留量。实验中采用标准漏瓶测定D2的标准漏率,测定值为1.82×1010 mol/s。D2的热脱附曲线是以质量数为4的信号为准,而在计算总脱附量时同时考虑了D2和HD信号的贡献。

2  结果与讨论

2.1  样品表面结构分析

XPS测试用以分析N等离子体预先辐照后W表面化学成键情况,测试结果如图2所示。图2(a)所示为N辐照前后W样品的N 1s谱图,可以看出,未辐照原始样品的N 1s曲线较为平缓,仅在结合能为400 eV处有一略高于背底的突起,可归结于表面N吸附峰;N等离子体预辐照样品,在结合能为397 eV处出现一个明显的峰,对应为W—N键。图2(b)所示为N辐照前后样品的W 4f谱图,对比图中峰的位置可以观察到:除了部分W的氧化峰,以及W—W键,N等离子体预辐照后的样品,还出现了W—N键。经测试得知,W—N键中,W与N的摩尔比为0.93:1。对比测试结果与结合能标准值,得知氮等离子体辐照后的钨材料表面生成了WN相[18]

图2  N等离子体辐照前后W样品表面的XPS谱

Fig. 2  XPS patterns of surface for W samples before and after irradiation by nitrogen plasma

2.2  样品表面形貌分析

采用DIC和FIB-SEM两种表征手段观察氮、D等离子体辐照后引起的W样品表面形貌变化。图3所示为N、D等离子体辐照实验后W材料的表面DIC图,其中图3(a1)、(a2)和(a3)所示分别为通量7.2×1023 D/m2、4.3×1024 D/m2以及1.0×1025 D/m2的D等离子体注入W样品的表面形貌。从图3中可以看出,当注入通量大于1×1024 D/m2时,D等离子体注入会引起W表面起泡,且随着D2注入通量的提高,表面氘致起泡数量随之增加,起泡尺寸明显增大;图3(b1)、(b2)和(b3)所示为N预辐照D再注入(氮等离子体辐照通量为9.8×1023 D/m2)样品表面形貌,可以看出,N预辐照的样品起泡趋势与未经N预辐照样品的趋势相同,即随着D2通量的提高,W样品表面起泡现象更加明显,氘泡的尺寸也明显增大。对比N预辐照与未经N预辐照W样品的表面形貌可以看出:N预先辐照的W样品表面起泡现象更明显,这与文献[19]报道结果一致。

为了更清晰地观察N与D等离子体辐照后W表面形貌变化,图4中选取相同D2注入通量的N预辐照样品与未经N预辐照的样品进行了FIB-SEM表征。图4(a1)所示为D2通量为1×1025 D/m2注入W样品SEM表面形貌图,图4(a2)和(a3)所示为SEM表面及断面(FIB切割)形貌。从图中可以观察到:注入D等离子体后,W块样品表面有明显的起泡现象,且这些氘泡分散分布在W样品表面。通过进一步的测量得到:氘致起泡直径在4.3~18.1 μm之间。由FIB-SEM截面图可以看出,在W样品近表面区域有开裂现象,裂纹距表面约0.9 μm,但考虑到FIB-SEM观察断面形貌时倾斜55°,所以实际裂纹的开裂深度为1.1 μm。图4(b1)所示为D2通量为1×1025 D/m2N预辐照D再注入样品SEM表面形貌图,图4(b2)和(b3)所示为SEM表面及断面(FIB切割)形貌。观察发现,与未经N预辐照样品的表面形貌规律相同:N预辐照样品氘致起泡位置较分散,起泡直径在6.5~18.4 μm之间。裂纹距表面约1.8 μm,即实际开裂深度为2.2 μm。对比经N预辐照样品和未经N预辐照的样品的表面及截面图,可以发现,N预辐照样品表面的氘致起泡数目比未经N预辐照的数目多且直径大;W样品表面起泡处的这种内部开裂现象,归因于D原子在晶界上累积导致应力增加,引起材料局部肿胀而造成材料沿晶界方向开裂[20]。结合上述XPS表面结构分析以及DIC表面形貌表征结果,由于N预辐照钨样品表面有WN相生成且WN相结构较致密[21]。因此,可以猜测:结构致密的WN相抑制了D原子沿表面方向的扩散逃逸,使D原子在W亚表面聚集,进而使其局部应力增加,增大了D在W样品表面的隆起或起泡程度。

图3  N/D等离子体辐照后W材料的DIC表面形貌

Fig. 3  DIC surface images of W samples after irradiation by nitrogen or deuterium plasma

2.3  氘在钨中的滞留和热脱附行为分析

图4  N/D等离子体辐照后W样品的SEM、FIB-SEM表面/断面形貌

Fig. 4  Surface and cross-section SEM-FIB images of W samples before and after irradiation by nitrogen and deuterium plasma, respectively

利用超高真空热脱附实验,考察N预辐照对D在W中热脱附以及滞留行为的影响。图5所示为经N预辐照和未经N预辐照样品在通量为1×1025 D/m2的D等离子体辐照后的D2热脱附谱图,图中圆圈代表实测数据,实线为拟合峰位。从图中观察到:对于经N预辐照和未经N预辐照的样品,D2均从约420 K开始脱附,在780 K左右完成全部脱附。无论是经N预辐照还是未经N预辐照的样品,D2在脱附过程中均出现了两个脱附峰,主峰位于670 K左右处,副峰位于500 K处,说明在W材料内D存在两种不同能量的捕获位。通常情况下,在低温区域释放的D2主要来自W样品内位错和晶界处的低能捕获位[22],而在高温区释放的D2则来自W样品内空位和空洞的高能捕获位[15, 19],这与本文所观察到的现象相符。对比4条拟合曲线峰位可以看出:相比于未经N预辐照样品,经N预辐照的样品无论是在低温区还是高温区,峰位均有明显的右移现象,即D2脱附温度有向高温区移动的趋势。在文献[23]报道中,研究者通过TAMP(Tritium migration analysis program)模拟软件拟合了D2热脱附实验过程,分析氘泡对TDS峰位的影响,指出氘泡越大峰位越向高温区移动,这也反过来验证了上文所述,即N等离子体预辐照使表面氘泡直径变大。

图5  N预辐照前后,D等离子体注入W样品的D2热脱附曲线(实测数据用圆圈表示,拟合数据用实线表示)

Fig. 5  D2 release spectra from bulk W exposed to deuterium plasma before and after nitrogen pre-irradiation

2.4  钨中氘滞留总量分析

图6所示为样品中氘滞留总量统计图,从图6中可以观察到,当D等离子体通量在1×1024 D/m2以上时,经N预辐照与未经N预辐照样品的氘滞留总量出现了较为明显的差异,这一结果也证实了上文所述结论,即N预辐照在一定程度上增加了D原子在W中的滞留。当D等离子体通量升至2.2×1025 D/m2时,经N预辐照和未经N预辐照钨样品中的D滞留总量值又趋于相同。相关研究表明,D+的辐照深度达6.3 nm,而N+的最大辐照深度为1.6 nm[24]。因此可以预测,经过高通量的D等离子体注入N预先辐照过的样品后,W表面的WN层被破坏,所以滞留量与未经N辐照样品趋于相同。经统计,本实验参数下,D原子在W中的滞留总量处于1×1019~1×1020 D/m2的范围,虽然N等离子体预先辐照会增加氘原子在W中的滞留,但经N预辐照的样品中D滞留总量也未超过1×1020 D/m2

图6  N预辐照前后,不同通量D等离子体辐照后W中D滞留总量统计图

Fig. 6  Total amount of deuterium in tungsten samples before and after nitrogen pre-irradiation

3  结论

1) 随着D等离子体注入通量的提高,样品表面氘致起泡现象愈加明显,表现为起泡数目和尺寸呈增长趋势;与未经N预辐照样品对比,经N预辐照后,D等离子体注入样品表面的氘泡直径更大,数目也更多。

2) 经N等离子体预辐照后,在W的亚表面处生成了WN相,使D原子在亚表面区域聚集,局部应力增加,使表面氘致起泡现象更加明显。

3) 分析D在W样品中热脱附和滞留行为发现,W中D有两种捕获位,而且经N预辐照样品的热脱附峰相比于未经N预辐照样品的更高,同时,峰位向高温区移动。

REFERENCES

[1] LEMAHIEU N, GREUNER H, LINKE J, MAIER H, PINTSUK G, OOST G V, WIRTZ M. Synergistic effects of ELMs and steady state H and H/He irradiation on tungsten[J]. Fusion Engineering and Design, 2015, 98/99: 2020-2024.

[2] FINLAY T J, DAVIS J W, SUGIYAMA K, ALIMOV V K, HAASZ A A. Effects of D and He implantation depth on D retention in tungsten under simultaneous D-He ion irradiation[J]. Physica Scripta, 2016, T167: 014042(1-6).

[3] NOBOTA Y, HATANO Y, TORIKAI Y, MATSOYAMA M, ABE S, YAMAUCHI Y. Tritium desorption and tritium removal from tungsten pre-irradiated with helium[J]. Fusion Engineering and Design, 2016, 109/111: 1179-1182.

[4] SHIMADA M, HATANO Y, ODA T, CALDERONI P, OYA Y, SOKOLOV M, ZHANG K, CAO G, KOLASINSKI R, SHARPE J P. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE[J]. Journal of Nuclear Materials, 2011, 415(1): S667-S671.

[5] MAIER H, LOTHIN J, BALDEN M, LINKE J, KOCH F,BOLT H. Properties of tungsten coatings deposited onto fine grain graphite by different methods[J]. Surface & Coatings Technology, 2001, 142/144: 733-737.

[6] TAKAMURA S, OHNO N, KAJITA S NISHIJIMA D. Formation of nanostructured tungsten with Arborescent shape due to Helium plasma irradiation[J]. Plasma and Fusion Research, 2006, 1(1): 051.

[7] ROTH J, TSITRONE E, LOARTE A, LOARER TH, COUNSELL G, NEU R, PHILIPPS V, BREIINSEK S, LEHNEN M, COAD P, GRISOLIA CH, SCHMID K, KRIEGER K, KALLENBACH A, LIPSCHULTZ B, DOEMER R, CAUSEY R, KUKUSHKIN A, ALIMOV V. Recent analysis of key plasma wall interactions issues for ITER[J]. Journal of Nuclear Materials, 2009, 390/391: 1-9.

[8] NEUWIRTH D, ROHDE V, SCHWARZSELINGER T. Formation of ammonia during nitrogen seeded discharges at ASDEX Upgrade[J]. Plasma Physics and Controlled Fusion, 2012, 54(8): 820-829.

[9] KALLENBACH A, DUX R, MAXER M, NEU R, PUTTERICH T, BOBKOU V, FUCHS J C, EICH T, GIANNONE L, GRUBER O, HERRMANN A, HORTON L D, MAGGI C F, MEISTER H, MULLER H, ROHDE V, SIPS A, STABLER A, STOBER L. ASDEX upgrade team[M]. Heidelberg: Springer, 2009, 17(4): 217-220.

[10] 李建刚. 我国超导托卡马克的现状及发展[J]. 中国科学院院刊, 2007, 22(5): 404-410.

LI Jian-gang. Current situation and development of superconducting tokamak in China[J]. Bulletin of Chinese Academy of Science, 2007, 22(5): 404-410.

[11] QIAO L, ZHANG H W, XU J, CHAI L Q, HU M, WANG P. Deuterium retention and release behaviors of tungsten and deuterium co-deposited layers[J]. Journal of Nuclear Materials, 2018, 502: 247-254.

[12] OHON N, NISHIJIMA D, TAKAMAURA S, UESUGI Y, MOTOYAMA M, HATTORI N, ARAKAWA H, WZUMI N, KRASHENINNIKOV S,PIGAROV A,WENZEL V. Static and dynamic behavior of plasma detachment in the divertor simulator experiment NAGDSIS-II[J]. Nuclear Fusion, 2001, 41(8): 1055-1065.

[13] 邹达人, 金 硕, 许 珂, 吕广宏, 赵振华, 程 龙, 袁 悦. 钨中氢同位素热脱附实验的速率理论模拟研究[J]. 物理学报, 2015, 64(7): 0728011-7.

ZHOU Da-ren, JIN Shuo, XU Ke, Lü Guang-hong, ZHAO Zhen-hua, CHENG Long, YUAN Yue. Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory[J]. Acta Phys Sin, 2015, 64(7): 0728011-7.

[14] YOU Y W, KONG X S, WU X B, XU Y C. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and FCC transition metals[J]. AIP Advances, 2013, 3(1): 012118.

[15] MANAARD A, SCHMID K, JACOB W, BALDEN M. Influence of the microstructure on the deuterium retention in tungsten[J]. Journal of Nuclear Materials, 2011, 415(1): S632-S635.

[16] WANG P, JACOB W, GAO L, DUBECK T, SCHWARZ- SELINGER T. Comparing deuterium retention in tungsten films measured by temperature programmed desorption and nuclear reaction analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 300: 54-61.

[17] SALANOCON E, DURBECK T, SCHWARZ-SELINGER T, GENOESE F, JACOB W. Redeposition of amorphous hydrogenated carbon films during thermal decomposition[J]. Journal of Nuclear Materials, 2006, 376: 160-168.

[18] WAGNER C D, RIGGS W M, DAVIS L E, MOULPER J F, MUILENBERG G E. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979)[M]. Google Scholar, 2006: 298.

[19] OGORODNIK O V, SUGIYAMA K, MARKIN A, GASPARYAN Y, EFMOV V, MANHARD A,BALDEN M. Effect of nitrogen seeding into deuterium plasma on deuterium retention in tungsten[J]. Physica Scripta, 2011, T145: 014034(1-5).

[20] CHENG L, TEMMERMAN D, MORGAN T W, SCHWARZ-SELINGER T, YUAN Y, ZHOU H B, WANG B, ZHANG Y, LU G H. Mitigated blistering and deuterium retention in tungsten exposed to high flux deuterium neon mixed plasma[J]. Nuclear fusion, 2017, 57(4): 046028(1-11).

[21] SCHMID K, MANHARD A, LINSMEIER CH, WILTNER A, SCHWARZ-SELINGER T, JACOB W, MANDL S. Interaction of nitrogen plasma with tungsten[J]. Nuclear Fusion, 2010, 50(2): 025006(1-9).

[22] TERENCON E, TEMMERMAN G, MORGANT W, ZAYACHUK Y, LAMBRINOV K, MINOV B, DUBINKO A, BYSTROV K, VAN O G. Effect of plastic deformation on deuterium retention and release in tungsten[J]. Journal of Applied Physics, 2015, 117(8): 083302.

[23] CAUSEY R A, DOEMER R,FRASER H, KOLASINSKI R D, SMUGERASKY J. Defects in tungsten responsible for molecular hydrogen isotope retention after exposure to low energy plasmas[J]. Journal of Nuclear Materials, 2009, 717: 390-391.

[24] SHU W M, WAKAI EYAMANISHI T. Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma[J]. Nuclear Fusion, 2007, 47(3): 201-209.

Influence of nitrogen plasma pre-irradiation on deuterium retention in tungsten

ZHANG Han-wen1, 2, WU You-zhi1, QIAO Li2, WANG Peng2

(1. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;

2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract: The nitrogen and deuterium exposures were performed in the linear experimental plasma system (LEPS). The influences of nitrogen pre-irradiation on the composition, microstructure and morphology of deuterium-exposed tungsten were analyzed using differential interference contrast microscope, field emission scanning electron microscope combined focused ion beam system and X-ray photoelectron spectroscopy before and after nitrogen and deuterium plasma exposure. Deuterium desorption curve and total retention in tungsten were analyzed by thermal desorption spectroscopy. The results show that the bubbles of samples with nitrogen pre-irradiation were more obvious after deuterium irradiation compared to that of tungsten without nitrogen pre-irradiation. The formation of tungsten nitride layer near surface is found, which makes deuterium supersaturated on the tungsten sub-surface, then the increase of local stress leads to the increase of deuterium on the tungsten surface. The deuterium desorption curve and the total amount of deuterium in W samples further confirm that nitrogen pre-irradiation with a specific energy can increase deuterium retention in tungsten.

Key words: tungsten; deuterium; nitrogen; retention; plasma irradiation

Foundation item: Project(2017YFE0302500) supported by the National Key R&D Project of China; Project(11875305) supported by the National Natural Science Foundation of China

Received date: 2018-08-28; Accepted date: 2019-04-11

Corresponding author: WU You-Zhi; Tel: +86-931-2975025; E-mail: youzhiwu@163.com

(编辑  王  超)

基金项目:国家重点研发计划资助项目(2017YFE0302500);自然科学基金面上项目(11875305)

收稿日期:2018-08-28;修订日期:2019-04-11

通信作者:吴有智,教授,博士;电话:0931-2975025;E-mail:youzhiwu@163.com

摘  要:利用直线等离子体模拟装置开展氮和氘等离子体注入钨的实验,采用微分干涉差显微镜(DIC)、场发射扫描电子显微镜(SEM)结合聚焦离子束(FIB)以及X射线光电子能谱仪,分别研究氮和氘等离子体辐照前后钨表面成分、形貌和微观组织结构的变化,采用超高真空热脱附系统对氮等离子体预先辐照后钨中氘的捕获状态和滞留总量进行分析。结果表明:经氮辐照后,钨样品表面形成了氮化钨相,进一步注入氘等离子体后其表面起泡增多,氘在钨中的滞留总量升高。这是由于氮化钨相的形成阻碍了氘原子沿表面方向扩散逃逸,使氘原子在钨的亚表面过饱和聚集,导致钨中氘致起泡现象更加明显。

[1] LEMAHIEU N, GREUNER H, LINKE J, MAIER H, PINTSUK G, OOST G V, WIRTZ M. Synergistic effects of ELMs and steady state H and H/He irradiation on tungsten[J]. Fusion Engineering and Design, 2015, 98/99: 2020-2024.

[2] FINLAY T J, DAVIS J W, SUGIYAMA K, ALIMOV V K, HAASZ A A. Effects of D and He implantation depth on D retention in tungsten under simultaneous D-He ion irradiation[J]. Physica Scripta, 2016, T167: 014042(1-6).

[3] NOBOTA Y, HATANO Y, TORIKAI Y, MATSOYAMA M, ABE S, YAMAUCHI Y. Tritium desorption and tritium removal from tungsten pre-irradiated with helium[J]. Fusion Engineering and Design, 2016, 109/111: 1179-1182.

[4] SHIMADA M, HATANO Y, ODA T, CALDERONI P, OYA Y, SOKOLOV M, ZHANG K, CAO G, KOLASINSKI R, SHARPE J P. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE[J]. Journal of Nuclear Materials, 2011, 415(1): S667-S671.

[5] MAIER H, LOTHIN J, BALDEN M, LINKE J, KOCH F,BOLT H. Properties of tungsten coatings deposited onto fine grain graphite by different methods[J]. Surface & Coatings Technology, 2001, 142/144: 733-737.

[6] TAKAMURA S, OHNO N, KAJITA S NISHIJIMA D. Formation of nanostructured tungsten with Arborescent shape due to Helium plasma irradiation[J]. Plasma and Fusion Research, 2006, 1(1): 051.

[7] ROTH J, TSITRONE E, LOARTE A, LOARER TH, COUNSELL G, NEU R, PHILIPPS V, BREIINSEK S, LEHNEN M, COAD P, GRISOLIA CH, SCHMID K, KRIEGER K, KALLENBACH A, LIPSCHULTZ B, DOEMER R, CAUSEY R, KUKUSHKIN A, ALIMOV V. Recent analysis of key plasma wall interactions issues for ITER[J]. Journal of Nuclear Materials, 2009, 390/391: 1-9.

[8] NEUWIRTH D, ROHDE V, SCHWARZSELINGER T. Formation of ammonia during nitrogen seeded discharges at ASDEX Upgrade[J]. Plasma Physics and Controlled Fusion, 2012, 54(8): 820-829.

[9] KALLENBACH A, DUX R, MAXER M, NEU R, PUTTERICH T, BOBKOU V, FUCHS J C, EICH T, GIANNONE L, GRUBER O, HERRMANN A, HORTON L D, MAGGI C F, MEISTER H, MULLER H, ROHDE V, SIPS A, STABLER A, STOBER L. ASDEX upgrade team[M]. Heidelberg: Springer, 2009, 17(4): 217-220.

[10] 李建刚. 我国超导托卡马克的现状及发展[J]. 中国科学院院刊, 2007, 22(5): 404-410.

LI Jian-gang. Current situation and development of superconducting tokamak in China[J]. Bulletin of Chinese Academy of Science, 2007, 22(5): 404-410.

[11] QIAO L, ZHANG H W, XU J, CHAI L Q, HU M, WANG P. Deuterium retention and release behaviors of tungsten and deuterium co-deposited layers[J]. Journal of Nuclear Materials, 2018, 502: 247-254.

[12] OHON N, NISHIJIMA D, TAKAMAURA S, UESUGI Y, MOTOYAMA M, HATTORI N, ARAKAWA H, WZUMI N, KRASHENINNIKOV S,PIGAROV A,WENZEL V. Static and dynamic behavior of plasma detachment in the divertor simulator experiment NAGDSIS-II[J]. Nuclear Fusion, 2001, 41(8): 1055-1065.

[13] 邹达人, 金 硕, 许 珂, 吕广宏, 赵振华, 程 龙, 袁 悦. 钨中氢同位素热脱附实验的速率理论模拟研究[J]. 物理学报, 2015, 64(7): 0728011-7.

ZHOU Da-ren, JIN Shuo, XU Ke, Lü Guang-hong, ZHAO Zhen-hua, CHENG Long, YUAN Yue. Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory[J]. Acta Phys Sin, 2015, 64(7): 0728011-7.

[14] YOU Y W, KONG X S, WU X B, XU Y C. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and FCC transition metals[J]. AIP Advances, 2013, 3(1): 012118.

[15] MANAARD A, SCHMID K, JACOB W, BALDEN M. Influence of the microstructure on the deuterium retention in tungsten[J]. Journal of Nuclear Materials, 2011, 415(1): S632-S635.

[16] WANG P, JACOB W, GAO L, DUBECK T, SCHWARZ- SELINGER T. Comparing deuterium retention in tungsten films measured by temperature programmed desorption and nuclear reaction analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 300: 54-61.

[17] SALANOCON E, DURBECK T, SCHWARZ-SELINGER T, GENOESE F, JACOB W. Redeposition of amorphous hydrogenated carbon films during thermal decomposition[J]. Journal of Nuclear Materials, 2006, 376: 160-168.

[18] WAGNER C D, RIGGS W M, DAVIS L E, MOULPER J F, MUILENBERG G E. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979)[M]. Google Scholar, 2006: 298.

[19] OGORODNIK O V, SUGIYAMA K, MARKIN A, GASPARYAN Y, EFMOV V, MANHARD A,BALDEN M. Effect of nitrogen seeding into deuterium plasma on deuterium retention in tungsten[J]. Physica Scripta, 2011, T145: 014034(1-5).

[20] CHENG L, TEMMERMAN D, MORGAN T W, SCHWARZ-SELINGER T, YUAN Y, ZHOU H B, WANG B, ZHANG Y, LU G H. Mitigated blistering and deuterium retention in tungsten exposed to high flux deuterium neon mixed plasma[J]. Nuclear fusion, 2017, 57(4): 046028(1-11).

[21] SCHMID K, MANHARD A, LINSMEIER CH, WILTNER A, SCHWARZ-SELINGER T, JACOB W, MANDL S. Interaction of nitrogen plasma with tungsten[J]. Nuclear Fusion, 2010, 50(2): 025006(1-9).

[22] TERENCON E, TEMMERMAN G, MORGANT W, ZAYACHUK Y, LAMBRINOV K, MINOV B, DUBINKO A, BYSTROV K, VAN O G. Effect of plastic deformation on deuterium retention and release in tungsten[J]. Journal of Applied Physics, 2015, 117(8): 083302.

[23] CAUSEY R A, DOEMER R,FRASER H, KOLASINSKI R D, SMUGERASKY J. Defects in tungsten responsible for molecular hydrogen isotope retention after exposure to low energy plasmas[J]. Journal of Nuclear Materials, 2009, 717: 390-391.

[24] SHU W M, WAKAI EYAMANISHI T. Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma[J]. Nuclear Fusion, 2007, 47(3): 201-209.