中国有色金属学报

文章编号:1004-0609(2015)03-0776-10

豫南姚冲钼矿床二长花岗岩锆石微量元素特征及其地质意义

刘清泉1, 2, 3, 4,张  宇1, 2,张智慧3,李  冰3,张  驰3

(1. 中南大学 有色金属成矿预测教育部重点实验室,长沙 410083;

2. 中南大学 地球科学与信息物理学院,长沙 410083;

3. 河南省有色金属矿产探测工程技术研究中心,郑州 450016;

4. 河南省有色金属地质勘查总院,郑州 450052)

摘 要:

姚冲钼矿床位于东秦岭-大别山钼成矿带上,矿体产于外接触带大别片麻杂岩中。对姚冲钼矿床成矿岩体的二长花岗岩开展了锆石Ce4+/Ce3+比值、Ce/Ce*及Eu/Eu*值的研究。结果表明,二长花岗岩的锆石Ce4+/Ce3+比值范围为188~676,平均值为384;锆石Ce/Ce*值范围为29.88~254.37,平均值为113.94;锆石Eu/Eu*值介于0.38~0.66之间,平均值为0.58,反映出与成矿作用有关的岩浆具有较高的氧逸度。锆石Ti含量温度范围为623.6~762.3 ℃,显示中酸性岩浆温度特征。姚冲成矿岩体源于扬子板块拆沉作用,导致软流圈上涌诱发加厚时地壳部分熔融产生的高氧逸度花岗质岩浆,高氧逸度岩浆在上升侵位的过程中,受到上部壳源物质的混染,岩浆在之后的结晶分异过程中产生富含Mo的岩浆热液流体,随着流体的运移,在合适地质条件下完成成岩成矿作用。

关键词:

姚冲钼矿床二长花岗岩锆石微量元素

中图分类号:P618                 文献标志码:A

Ziron trace element characteristics and its implication of monzogranite in Yaochong Mo deposit, Southern Henan, China

LIU Qing-quan1, 2, 3, 4, ZHANG Yu1, 2, ZHANG Zhi-hui3, LI Bing3, ZHANG Chi3

(1. Key Laboratory of Nonferrous Metal Ore Forecast, Ministry of Education,

Central South University, Changsha 410083, China;

2. School of Geosciences and Info physics, Central South University, Changsha 410083, China;

3. Non-Ferrous Mineral Exploration Engineering Research Center of Henan Province, Zhengzhou 450016, China;

4. Henan Institute of Geological Exploration for Non-ferrous Metal, Zhengzhou 450052, China)

Abstract: Yaochong Mo deposit locates at the Qinling-Dabie metallogenic belt, the deposit is hosted by Dabie metamorphic complex at the exocontact zone. The results show that, the values of Ce4+/Ce3+, Ce/Ce* and Eu/Eu* of zircons in monzogranite from Yaochong Mo deposit are from 188 to 676, 29.88 to 254.37, 0.38 to 0.66, and the average values are 384, 113.94 and 0.58, respectively, which suggests that magma has the characteristics of high oxygen fugacity. Ti content temperature of zircons is from 623.6 ℃ to 762.3 ℃, which is temperature characteristics of middle-acidic magma. The ore-forming rock is from the granitic magma with high oxygen fugacity derived from the patial melting of ancient crust triggered by asthenosphere upwelling, and the granitic magma with high oxygen fugacity is contaminated by the earth’s crust material during the process of emplacement, and then the magma produces magmatic hydrothermal fluid with rich Mo, which causes that diagenetic and mineralization came out in the proper geological conditions with the fluid migration.

Key words: Yaochong Mo deposit; monzogranite; zircon; trace element

秦岭-大别钼矿带是典型的陆内环境产出的斑岩型钼矿带,成矿带内分布了一系列与燕山期中酸性小侵入体有关的各种规模的斑岩钼矿床。其中,姚冲钼矿床位于秦岭-大别造山带东部,大别山北麓的河南省新县戴嘴镇,是秦岭-大别山成矿带由河南省有色金属地质勘查总院发现的一斑岩型钼矿床,目前控制规模为中型[1]。大别山钼矿带在2000年之前,仅发现了母山、肖畈、大银尖等几个中小型钼矿床(点)。近年来,随着该地区勘查投入大幅度增加,相继发现了汤家坪大型钼矿床和千鹅冲、沙坪沟等超大型矿床,同时还发现了一大批中小型矿床,与东秦岭钼成矿带相连,构成了中国最大的钼矿省,探明钼资源储量约500万t[2]。已有研究者对成矿时代、成矿流体和成矿物质来源等进行了分析[3-5],钻探工程ZK0403已验证深部存在隐伏岩体,且与矿体具有密切的空间产出关系。

岩浆氧逸度是斑岩矿床成矿作用的一个重要地球化学参数,是制约Cu和Mo等成矿元素聚集的重要因素之一。对岩浆相当氧逸度开展研究能够为区分含矿岩体与非含矿岩体提供帮助,进而为找矿潜力评价提供依据。近年来,利用岩体中锆石的Ce4+/Ce3+比值计算岩浆岩的相对氧逸度得到了学者们的重视[6-10]

在此,本文作者以姚冲钼矿床为研究对象,利用二长花岗岩中锆石的Ce4+/Ce3+和锆石Ti含量温度计开展岩浆相对氧逸度及锆石结晶温度研究,对岩浆的氧逸度、锆石结晶温度和成岩成矿地球动力学背景进行探讨,为豫南大别山北麓地区斑岩钼矿床成矿作用研究提供依据,为该区进一步开展找矿工作提供理论指导。

1  成矿地质背景

大别造山带夹持于扬子板块向华北板块俯冲碰撞的过渡地带,呈东宽西窄的楔形地质体(见图1),是扬子板块向华北板块俯冲碰撞的产物[11-15]。造山带东端被郯庐断裂截切,西段通过南阳盆地与秦岭造山带连接。

大别造山带自北而南大体划分4个构造单元:北淮阳构造带、北大别变质杂岩带、南大别变质核杂岩带和宿松变质杂岩带[16-17]。大别山北麓地区包括北淮阳构造带和北大别变质杂岩带两部分。以北西西向桐柏-商城断裂为界,北侧为北淮阳构造带,南侧为北大别变质杂岩带。在大别山北麓地区,构造格架表现为近东西向与近南北向两组构造相互交织形成的网格状构造系统。区域性北西西向断裂主要有龟山-梅山断裂(简称龟-梅断裂)、桐柏-商城断裂(简称桐-商断裂),近南北向断裂主要有涩港断裂、新县断裂和商城-麻城断裂等。大别山北麓地区地层系统由北淮阳构造带北亚带、北淮阳构造带南亚带和桐柏-大别变质核杂岩隆起亚带3个部分组成。

图1  大别造山带地质略图[5]

Fig. 1  Geological sketch map of Dabie oregenic belt[5]

区内岩浆活动比较强烈,以中生代岩浆活动最为强烈,尤其是燕山期岩浆岩十分发育,以中酸性侵入岩占主要地位,研究区内出露有3大花岗岩体,自西向东分别为灵山岩体、新县岩体和商城岩体,沿桐-商断裂分布。中酸性小侵入体数量众多,如汤家坪岩体、大银尖岩体、母山岩体和亮山岩体等,这些小岩体是研究区内钼矿床的主要成矿母岩[18-19]

2  矿床地质特征

姚冲钼矿床位于大别山北麓河南省新县戴嘴镇,处于桐柏-商城断裂带南侧(见图2)。区内出露地层为元古界大别片麻杂岩和第四系,岩性主要为黑云斜长片麻岩、含榴白云斜长片麻岩和斜长角闪(片)岩等,区内构造较复杂,主要表现为一些小断裂构造,其中斑岩体及外接触带中节理裂隙广泛发育,为钼矿床的形成提供了良好的运移通道和容矿空间,是矿区的主要赋矿构造,矿区内酸性岩脉出露较多,主要为花岗斑岩脉和花岗岩岩脉出露,岩脉主要呈北东向和近东西向展布,ZK0403得以验证这些岩脉在深部汇聚成大的花岗岩体,说明隐伏岩体的存在。

图2  大别山北麓姚冲矿区地质略图[5]

Fig. 2  Simplified geological map of Yaochong Mo district[5]

钼矿体呈不规则状、透镜状及似层状(见图2),赋存于花岗岩体(脉)外接触带的中元古界片麻岩中,钼矿体东西长960 m,南北宽800 m,矿体最大厚度62.53 m,平均厚度28.19 m,钼平均品位0.062%,钼矿资源量达大型规模[1]。矿石类型主要为浸染状矿石、细脉-网脉状、薄膜状和角砾状,矿石矿物有辉钼矿、黄铁矿、黄铜矿和方铅矿等,脉石矿物有石英、钾长石、斜长石、黑云母、绿泥石、绿帘石和萤石等。矿石结构主要为自形-半自形鳞片状结构、交代结构和填隙结构,矿石构造主要有浸染状、细脉状和细脉状构造。围岩蚀变类型主要为硅化、钾长石化、绢云母化、绿泥石化、绿帘石化、方解石化、高岭土化和萤石化等,蚀变常呈叠加特征,其中硅化、钾长石化和绢云母化与钼矿化关系最为密切。

3  样品及分析方法

本研究中采集的样品ZK0403-8来自ZK0403钻孔1125 m处,位于隐伏岩体的顶部,矿体即产于隐伏岩体上部的外接触带中。样品为二长花岗岩,二长花岗岩为似斑状结构,块状构造,斑晶主要为石英(15%~25%,体积分数,下同)、条纹长石(5%~10%)和微斜长石(5%~10%),基质主要为石英、微斜长石、条纹长石、斜长石和黑云母,基质含量为55%~70%,副矿物主要有磁铁矿、锆石和磷灰石等。

锆石微量元素分析是在LA-ICP-MS锆石U-Pb年龄测定的同时获取的,LA-ICP-MS在中国冶金地质总局山东局测试中心实验室完成。样品采自钻孔中的新鲜岩石,锆石分选在廊坊峰泽源岩矿检测技术有限公司完成,锆石阴极发光(CL)照相在JEOL-JXA-8100电子探针仪上完成,工作状态为加速电压15 kV,束电流2×10-8 A。LA-ICP-MS锆石U-Pb定年采用的仪器型号为Thermo Xeries 2,配置Coherent公司生产的COMPex Pro CO2F Geolas 193 nm ArF准分子激光剥蚀系统,分析过程激光束斑直径为30 μm,频率为8 Hz,能量密度8.5 J/cm2,剥蚀时间110 s(前30 s空白信号,55 s剥蚀时间,25 s吹扫残留信号时间)。详细实验原理及测试方法见Jackson et al(2004)[20]。数据处理使用ICPMSDataCal程序[21]

4  锆石U-Pb年龄、微量元素分析结果

样品中的锆石多呈柱状,无色透明,长度一般为80~150 μm,长宽比一般为2:1~4:1,具清晰震荡环带,且裂纹不发育(见图3)。在样品ZK0403-8中挑选出的锆石共测试了19 个点,得到LA-ICP-MS 锆石U-Pb年龄为(139.6±2.0) Ma,岩体形成于晚侏罗世-早白垩世,在LA- ICP-MS锆石U-Pb 定年的同时,获得了锆石微量元素数据,结果列于表1中。

二长花岗岩中锆石稀土元素总量(ΣREE)介于229.201×10-6~813.372×10-6之间,平均值为563.177× 10-6。显示典型岩浆锆石的稀土配分模式,即:轻稀土亏损、重稀土逐步富集、明显的Ce 正异常(Ce/Ce*= 29.88~254.37,平均值113.94)和Eu负异常(Eu/Eu*= 0.38~0.66,平均值0.58)等特征(见表2)[22]。锆石的稀土元素配分曲线(见图4)均落入岩浆锆石稀土配分曲线区域中,与w(La)-(Sm/La)N图解(见图5)显示结果一致。综合信息显示,锆石晶体特征、稀土元素特征和w(La)-(Sm/La)N图解均说明所测锆石为岩浆锆石。

图3  姚冲二长花岗岩中锆石代表性阴极发光图像及测点位置

Fig. 3  CL images of representative zircons in monzogranite from Yaochong Mo deposit with analytical numbers and U-Pb ages

表1  姚冲钼矿床二长花岗岩锆石微量元素

Table 1  Content of zircons’ trace elements from monzogranite in Yaochong Mo deposit

表2  姚冲钼矿床二长花岗岩锆石Ce4+/Ce3+值、Eu/Eu*值和Ce/Ce*

Table 2  Ce4+/Ce3+, Eu/Eu* and Ce/Ce* of zircons from monzogranite in Yaochong Mo deposit

图4  锆石稀土元素球粒陨石标准化配分曲线

Fig. 4  Curves of chondrite vs normalized REE patterns of zircons

图5  锆石的w(La)-(Sm/La)N图解

Fig. 5  Diagram of (Sm/La)N vs w(La) of zircons

5  讨论

5.1  岩浆氧逸度

岩浆中的Ce通常以Ce3+和Ce4+两种形式存在,氧化环境下锆石中的Ce4+易置换Zr4+,且Ce3+和Ce4+具有很强的分异能力,对岩浆的氧化还原环境比较敏感,因此可以借助Ce4+/Ce3+来判断岩浆氧逸度的相对高低[6, 8, 22-23]。矿床含矿岩体和不含矿岩体的对比研究发现,含矿岩体的锆石Ce4+/Ce3+明显高于不含矿岩体[6-10]

利用BALLARD等[6]和辛洪波等[8]的计算方法,对姚冲斑岩钼矿床二长花岗岩中锆石Ce4+/Ce3+进行了计算,计算结果(见表2)显示,锆石的Ce4+/Ce3+取值范围为188~676,平均值为384,与西藏玉龙、冈底斯地区、智利东部和豫南大别山千鹅冲斑岩矿床的Ce4+/Ce3+值基本一致[6-10],具有相似的特征。表明姚冲二长花岗岩的岩浆氧逸度相对较高。

图6  锆石的Ce4+/Ce3+-Ce/Ce*图解

Fig. 6  Diagram of Ce4+/Ce3+ vs Ce/Ce* of zircons

图7  锆石的Ce4+/Ce3+-Eu/Eu*图解

Fig. 7  Diagram of Ce4+/Ce3+ vs Eu/Eu* of zircons

Ce异常和Eu异常也通常用来判断体系氧化还原状态,利用锆石微量元素含量计算的姚冲二长花岗岩体中锆石的Ce/Ce*和Eu/Eu*见表2。锆石Ce/Ce*值介于29.88~254.37,平均值为113.94;Eu/Eu*值介于0.38~0.66,平均值为0.58。锆石的Ce4+/Ce3+-Ce/Ce*图解(见图6)和Ce4+/Ce3+-Eu/Eu*图解(见图7)显示,Ce4+/Ce3+与Ce/Ce*显示一定的正相关性,而与Eu/Eu*显示一定的负相关性,说明Ce/Ce*同样可以指示岩浆的氧逸度,而代表还原性的Eu/Eu*也可以间接指示岩浆氧逸度。BALLARD 等[6]和LIANG等[7]分别对智利北部斑岩铜矿和玉龙矿带含矿岩体中锆石的Ce4+/Ce3+和U-Pb年龄进行相关性分析,发现二者呈明显的负相关性,姚冲二长花岗岩中锆石的年龄和氧逸度同样显示出一定的负相关性(见图8)。

综上所述,姚冲斑岩钼矿床二长花岗岩中锆石的Ce4+/Ce3+比值和Eu/Eu*值均具有典型陆内环境斑岩型矿床的特征(Ce4+/Ce3+>260, Eu/Eu*>0.4)[8],与冈底斯地区、智利东部和豫南大别山千鹅冲斑岩矿床的研究结果基本一致。

图8  锆石的Ce4+/Ce3+-206Pb/238U年龄图解

Fig. 8  Diagram of Ce4+/Ce3+ vs 206Pb/238U ages of zircons

5.2  锆石结晶温度

温度是研究地质过程的一个重要参数。元素Ti由于能对锆石中的Zr和Si进行有效的替换,而且这种替换过程主要受温度控制,而与压力关系不大[24-27]。利用此原理,众多学者开展了锆石Ti含量温度计的研究[26-31]。本文作者利用WATSON等[27]提出的锆石Ti含量温度计算方法,对姚冲二长花岗岩中的锆石结晶温度进行了计算(见表2)。结果显示:锆石结晶温度范围为623.6~762.3 ℃,平均温度706.8 ℃(见图9),与一般中酸性岩浆温度(650~800 ℃)相符[32]。且锆石结晶温度与锆石的年龄呈现一定的正相关关系(见图10)。

图9  姚冲钼矿床二长花岗岩锆石结晶温度分布图

Fig. 9  Crystallization temperature distribution of zircons from quartz monzodiorite monzogranite in Yaochong Mo deposit

图10  锆石结晶温度-206Pb/238U年龄图解

Fig. 10  Diagram of crystallization temperature vs 206Pb/238U ages of zircons

5.3  地球动力学背景

自加里东运动开始,直到三叠纪早期,华北克拉通一直处于稳定发展阶段[33-35],印支期之后开始碰撞造山作用,碰撞造山带的演化通常经历由挤压向伸展构造体制转换过程[36-37],大别造山带扬子板块断离可能导致早白垩世软流圈上涌以及大规模的地壳伸展[10, 38-40]

毛景文等[41]通过对华北克拉通及其邻区中生代成岩成矿作用的地球动力学演化特征分析研究,认为成岩成矿作用有三大成矿期,所对应的地球动力学背景依次为晚三叠世-中侏罗世华北板块与扬子板块的碰撞造山后的南北向构造伸展过程、晚侏罗世-早白垩世由库拉板块俯冲于中国古大陆板块之下造成的南北向伸展构造体制向东西向挤压构造体制大转换过程和早白垩世晚期东西向岩石圈大规模伸展减薄过程。

姚冲钼矿床二长花岗岩成岩年龄为(139.6±2.0) Ma,对应的地球动力学背景为晚侏罗世-早白垩世构造体制从挤压收缩向区域性伸展大转换阶段。晚侏罗世-早白垩世受太平洋构造域的影响,库拉板块俯冲向中国古大陆板块俯冲,中国中东部由以近东西向构造为主向以北北东向构造为主的区域构造体制大转 换[42],此时地壳深部由于扬子板块发生断离,软流圈上涌导致岩石圈地幔发生部分熔融形成幔源岩浆,幔源岩浆在壳幔边界发生底侵作用,从而诱发加厚的下地壳部分熔融形成花岗质岩浆。在姚冲地区,花岗质岩浆沿定远-八里畈断裂和近南北向断裂的交汇部位上升至浅层次侵位,姚冲二长花岗岩锆石Ce4+/Ce3+值和Eu的负异常均表明岩浆具有较高的氧逸度,因此,源区岩浆在上升侵位的过程中,受到了上部壳源物质的混染。高氧逸度岩浆在随后的结晶分异过程中产生富含Mo的岩浆热液流体,流体在运移的过程中,随着压力、温度等因素的变化,在有利地质条件下完成成岩成矿作用。

6  结论

1) 姚冲二长花岗岩锆石Ce4+/Ce3+ 比值(平均384)、Ce/Ce*值(平均113.94)和Eu/Eu*值(平均0.58)显示岩浆具有相对高的氧逸度。锆石Ti含量温度计分析结果显示,锆石结晶温度范围为623.6~762.3 ℃,具有中酸性岩浆温度特征。

2) 姚冲岩体侵位发生早白垩世构造体制大转换阶段,扬子板块拆沉作用导致软流圈上涌,进而诱发加厚下地壳部分熔融产生岩浆活动,源区岩浆在上升侵位的过程中,受到了上部壳源物质的混染。

REFERENCES

[1] 李 毅, 胡海珠, 陈丽娟, 白凤军, 李红超. 大别山北麓姚冲钼矿床地质特征及找矿标志[J]. 地质与勘探, 2013, 49(2): 280-288.

LI Yi, HU Hai-zhu, CHEN Li-juan, BAI Feng-jun, LI Hong-chao. Geological features and ore-searching indicators of the Yaochong Mo deposit in the northern Piedmont of the Dabie Shang[J]. Geology and Prospecting, 2013, 49(2): 280-288.

[2] MAO Jin-wen, PIRAJNO F, XIANG Jun-feng. Mesozoic molybdenum deposits in the east Qinlin-Dabie orogenic belt: Characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43: 264-293.

[3] 陈丽娟, 陈 鹏. 河南省新县姚冲钼矿床地质特征及控矿因素分析[J]. 地质找矿论丛, 2011, 26(4): 385-392.

CHEN Li-juan, CHEN Peng. Study on geological characteristics and ore-controlling factors of Yaochong molybdenum deposit in Xinxian County, Henan Province[J]. Contributions to Geology and Mineral Resources Research, 2011, 26(4): 385-392.

[4] 王 玭, 陈衍景, 糜 梅, 李忠烈, 王莉娟. 河南省新县姚冲钼矿床流体包裹体研究[J]. 岩石学报, 2013, 29(1): 107-120.

WANG Pi, CHEN Yan-jing, MI Mei, LI Zhong-lie, WANG Li-juan. Fluid evolution in the Yaochong porphyry Mo deposit,Dabie Shan, China[J]. Acta Petrologica Sinica, 2013, 29(1): 107-120.

[5] 刘清泉, 张智慧, 李永峰, 罗正传, 谢克家. 大别山北麓斑岩型钼矿床地质特征、成矿时代及其成矿构造背景[J]. 地质与勘探, 2014, 50(2): 199-215.

LIU Qing-quan, ZHANG Zhi-hui, LI Yong-feng, LUO Zheng-zhuan, XIE Ke-jia. Geologic features, mineralization epoch and tectonic setting of molybdenum deposits in the northern Dabie Mountain[J]. Geology and Prospecting, 2014, 50(2): 199-215.

[6] BALLARD J R, MICHAEL P, CAMLLELL H I. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: application to porphyry copper deposits of northern Chile[J]. Contrib Mineral Petrol, 2002, 144: 347-364.

[7] LIANG H Y, CAMPLELL H I, ALLEN C, SYN W D, LIU C Q, YU H X, XIE Y W, ZHANG Y Q. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J]. Mineralium Deposita, 2006, 41: 152-159.

[8] 辛洪波, 曲晓明. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束[J]. 矿物学报, 2013, 28(2): 152-160.

XIN Hong-bo, QU Xiao-ming. Relative ocidation states of ore-bearing porpherries inferred from Ce(Ⅳ)/Ce(Ⅲ) ratio in zircon: Application to the porphyry copper belt at Gangdese, Tibet[J]. Acta Mineralogica Sinica, 2013, 28(2): 152-160.

[9] 罗茂澄, 王立强, 冷秋锋, 陈 伟. 邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩锆石Hf 同位素和Ce4+/Ce3+比值[J]. 矿床地质, 2011, 30(2): 266-278.

LUO Mao-cheng, WANG Li-qiang, LENG Qiu-feng, CHEN Wei. Zircon Hf isotope and Ce4+/Ce3+ ratio of the monzogranite porphyry and biotite monzonitic granite in Bangpu Mo(Cu) deposit, Tibet. Mineral Deposits, 2011, 30(2): 266-278.

[10] 高 阳, 叶会寿, 李永峰, 罗正传, 李法岭, 熊必康, 孟 芳. 大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征[J]. 岩石学报, 2014, 30(1): 49-63.

GAO Yang, YE Hui-shou, LI Yong-feng, LUO Zheng-zhuan, XIONG Bi-kang, MENG Fang. SHRIMP zircon U-Pb ages, Hf isotopic compositions and trace elements characterristics of the granites from the Qian’echong Mo deposit, Dabie Orogen[J]. Acta Petrologica Sinica, 2014, 30(1): 49-63.

[11] 汤加富, 侯明金, 李怀坤, 吴跃东, 孙乘云. 扬子地块东北缘多期叠加变形及形成演化[J]. 大地构造与成矿学, 2003, 27(4): 313-326.

TANG Jia-fu, HOU Ming-jin, LI Huai-kun, WU Yue-dong, SUN Cheng-yun. Multi-superimposed deformations and their evolution in northeastern margin of Yangtze Block[J]. Geotectonica et Metallogenia, 2003, 27(4): 313-326.

[12] 王勇生, 朱 光, 王道轩, 刘国生, 宋传中. 大别山东缘郯庐两期走滑剪切带形成的温压条件与造山带折返的关系[J]. 大地构造与成矿学, 2004, 28(3): 228-238.

WANG Yong-sheng, ZHU Guang, WANG Dao-xuan, LIU Guo-sheng, SONG Chuan-zhong.Relation between P-T conditions of two phases of Tanlu strike-slip shear zones and delamination of the orogenic belts on the eastern margin of the Dabie Mountains[J]. Geotectonica et Metallogenia, 2004, 28(3): 228-238.

[13] 徐树桐, 江来利, 刘贻灿, 张 勇. 大别山区(安徽部分)的构造格局和演化过程[J]. 地质学报, 1992, 66(1): 1-14.

XU Shu-tong, JIANG Lai-li, LIU Yi-can, ZHANG Yong. Tectonic framework and evolution of the Dabie Mountains in Anhui, Eastern China[J]. Acta Geologica Sinica, 1992, 66(1): 1-14.

[14] 杨巍然, 杨坤光, 刘忠明, 简 平. 桐柏-大别造山带加里东期构造热事件及其意义[J]. 地学前缘, 1999, 6(4): 247-253.

YANG Wei-ran, YANG Kun-guang, LIU Zhong-ming, JIAN Ping. Caledonian tectono-thermal event in Tongbai-Dabie orogenic belt and its significance[J]. Earth Science Frontiers, 1999, 6(4): 247-253.

[15] 翟明国. 华北克拉通破坏前的状态: 对讨论华北克拉通破坏问题的一个建议[J]. 大地构造与成矿学, 2008, 32(4): 516-520.

ZHAI Ming-guo. State of lithosphere beneath the North China Craton before the Mesozoic lithospheric disruption: A suggestion[J]. Geotectonica ET Metallogenia, 2008, 32(4): 516-520.

[16] 高 山, 张本仁, 金振民. 秦岭-大别造山带下地壳拆沉作用[J]. 中国科学(D辑), 1999, 29(6): 532-541.

GAO Shan, ZHANG Ben-ren, JIN Zhen-min. The lower crustal delamination in Qinling-Dabie orogeny[J]. Science in China (Series D), 1999, 29(6): 532-541.

[17] 王清晨, 丛柏林. 大别山超高压变质带的大地构造框架[J]. 岩石学报, 1998, 14(4): 481-492.

WANG Qing-chen, CONG Bo-lin. Tectonic framework of the ultrahigh-pressure metamorphic zone from the Dabie Mountains[J]. Acta Petrologica Sinica, 1998, 14(4): 481-492.

[18] 李俊平, 李永峰, 罗正传, 谢克家. 大别山北麓钼矿找矿重大进展及其矿床地质特征研究[J]. 大地构造与成矿学, 2011, 35(4): 576-586.

LI Jun-ping, LI Yong-feng, LUO Zheng-zhuan, XIE Ke-jia. Geological features of molybdenum deposits and ore prospecting in northern slope of the Dabie Mountain, China[J]. Geotectonica ET Metallogenia, 2011, 5(4): 576-586.

[19] 刘清泉, 柳玉虎, 李永峰, 罗正传, 谢克家. 大别山北麓斑岩型钼矿床成矿地质条件及矿床成因[J]. 地质找矿论丛, 2013, 28(1) : 27-33.

LIU Qing-quan, LIU Yu-hu, LI Yong-feng, LUO Zheng-zhuan, XIE Ke-jia. Metallogenic Conditions and Genesis of Porphyry-Type Molybdenum Deposit in the northern Piedmont of Dabieshan Mountain[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(1): 27-33.

[20] JACKSON S E, PEARSON N J, GRIFFINn W L. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69.

[21] LIU Y S, GAO S, HU Z C. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J Petrology, 2010, 51(1): 537-571.

[22] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-285.

ZHAO Zheng-hua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers, 2010, 17(1): 267-285.

[23] BURNHAM A D, BERRY A J. An experimental study of trace element partitioning between ziron and melt as a function of oxygen fugacity[J]. Geochimica et Cosmochimica Acta, 2012, 95: 196-212.

[24] TROTZSCH U, ELLIS D J. The ZrO2-TiO2 phase diagram J]. Journal of Materials Science, 2005, 40: 4571-4577.

[25] TROTZSCH U, ELLIS D J. High P T study of solid solutions in the system ZrO2-TiO2: The stability of strilankite[J]. European Journal of Mineralogy, 2004, 16: 577-584.

[26] WATSON E B, HARRISON T M. Zircon thermometer reveals minimum melting conditions on earliest earth[J]. Science, 2005, 308: 841-844.

[27] WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151: 413-433.

[28] ZACK T, MORAES R, KRONZ A. Temperature dependence of Zr-in-rutile: Empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148: 471-488.

[29] CHAPPELL B W, WHITE A J R, WILLAMS I S. Low-and high-temperature granites[J]. Trans Roy Soc Edinburgh Earth Sci, 2004, 95: 125-140.

[30] FERRY J M, WATSON E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2007, 154: 429-437.

[31] TOMKINSH S, POWELLR, ELLIS D J. The pressure dependence of the zirconium-in-rutile thermometer[J]. Journal of Metamorphic Geology, 2007, 25(6): 703-713.

[32] 夏邦栋. 普通地质学[M]. 北京: 地质出版社, 1995: 1-82.

XIA Bang-dong. General geology[M]. Beijing: Geological Press, 1995: 1-82.

[33] AMES Leslie, TILTON George R, ZHOU Gao-zhi. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21: 339-342.

[34] 李锦轶. 中朝地块与扬子地块碰撞的时限与方式: 长江中下游地区震旦纪-侏罗纪沉积环境的演变[J]. 地质学报, 2001, 75(1): 25-34.

LI Jin-yi. Pattern and Time of the collision between the Sino Korean and Yangtze Blokes: Evolution of the Sinian-Jurassic sedimentary settings in the middle-lower reaches of the Yangtze River[J]. Acta Geologica Sinica, 2001, 75(1): 25-34.

[35] 张国伟, 张本仁, 袁学诚, 肖庆辉. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855.

ZHANG Guo-wei, ZHANG Ben-ren, YUAN Xue-chen, XIAO Qin-hui. Qinling orogenic belt and continental dynamics[M]. Beijing: Science Press, 2001: 1-855.

[36] LEECH M L. Arrested orogenic development: Eclogitization, delamination, and tectonic collapse[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 149-159.

[37] VANDERHAEGHEe O, TEYSSIER C. Partial melting and flow of orogens[J]. Tectonophysics, 2001, 342(3/4): 451-472.

[38] BRYANT D L, AYERS J C, GAO S. Geochemical, age, and isotopic constraints on the northern Dabie comples, east central Chian[J]. Geological Society of America Bulletin, 2004, 116(5/6): 698-717.

[39] HACKER B R, ATACHBACHER L, LIU J G. Subduction, collision and exhumation in the ultrahigh-pressure Qin-ling-Dabie orogen[C]// MALPAS J, FLETCHER C, ALI J R, ed. Aspects of the Tectonic Evolution of China. London: Geological Society, Special Publication, 2004, 226: 157-175.

[40] LIU X C, JAHN B M, LIU D Y. SHRIMP U-Pb dating on zircon of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications[J]. Tectonophysics, 2004, 394: 171-192.

[41] 毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示[J]. 中国科学(D辑), 2003, 33(4): 289-299.

MAO Jin-wen, ZHANG Zuo-heng, YU Jin-jie, WANG Yi-tian, NIU Bao-gui. The geodynamics setting of Mesozoic large-scale mineralization in North China: The revelation from accurate timing of metal deposits[J]. Science in China (Series D), 2003, 33(4): 289-299.

[42] 任继舜. 论中国大陆岩石圈构造的基本特征[J]. 中国区域地质, 1991(4): 289-293.

REN Ji-sun. The basic characteristics of the tectonic evolution of the continental lithosphere in China[J]. Regional Geology of China, 1991(4): 289-293.

(编辑  龙怀中)

基金项目:中国地质调查局地质矿产调查评价专项(12120113091200);国土资源公益性行业科研专项 (20111107-2);河南省有色金属地质矿产局科技创新项目(ysdk2012-6)

收稿日期:2014-05-25;修订日期:2014-12-11

通信作者:张  宇,博士研究生;电话:13467514755;E-mail: zyu2009@qq.com

摘  要:姚冲钼矿床位于东秦岭-大别山钼成矿带上,矿体产于外接触带大别片麻杂岩中。对姚冲钼矿床成矿岩体的二长花岗岩开展了锆石Ce4+/Ce3+比值、Ce/Ce*及Eu/Eu*值的研究。结果表明,二长花岗岩的锆石Ce4+/Ce3+比值范围为188~676,平均值为384;锆石Ce/Ce*值范围为29.88~254.37,平均值为113.94;锆石Eu/Eu*值介于0.38~0.66之间,平均值为0.58,反映出与成矿作用有关的岩浆具有较高的氧逸度。锆石Ti含量温度范围为623.6~762.3 ℃,显示中酸性岩浆温度特征。姚冲成矿岩体源于扬子板块拆沉作用,导致软流圈上涌诱发加厚时地壳部分熔融产生的高氧逸度花岗质岩浆,高氧逸度岩浆在上升侵位的过程中,受到上部壳源物质的混染,岩浆在之后的结晶分异过程中产生富含Mo的岩浆热液流体,随着流体的运移,在合适地质条件下完成成岩成矿作用。

[1] 李 毅, 胡海珠, 陈丽娟, 白凤军, 李红超. 大别山北麓姚冲钼矿床地质特征及找矿标志[J]. 地质与勘探, 2013, 49(2): 280-288.

LI Yi, HU Hai-zhu, CHEN Li-juan, BAI Feng-jun, LI Hong-chao. Geological features and ore-searching indicators of the Yaochong Mo deposit in the northern Piedmont of the Dabie Shang[J]. Geology and Prospecting, 2013, 49(2): 280-288.

[2] MAO Jin-wen, PIRAJNO F, XIANG Jun-feng. Mesozoic molybdenum deposits in the east Qinlin-Dabie orogenic belt: Characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43: 264-293.

[3] 陈丽娟, 陈 鹏. 河南省新县姚冲钼矿床地质特征及控矿因素分析[J]. 地质找矿论丛, 2011, 26(4): 385-392.

CHEN Li-juan, CHEN Peng. Study on geological characteristics and ore-controlling factors of Yaochong molybdenum deposit in Xinxian County, Henan Province[J]. Contributions to Geology and Mineral Resources Research, 2011, 26(4): 385-392.

[4] 王 玭, 陈衍景, 糜 梅, 李忠烈, 王莉娟. 河南省新县姚冲钼矿床流体包裹体研究[J]. 岩石学报, 2013, 29(1): 107-120.

WANG Pi, CHEN Yan-jing, MI Mei, LI Zhong-lie, WANG Li-juan. Fluid evolution in the Yaochong porphyry Mo deposit,Dabie Shan, China[J]. Acta Petrologica Sinica, 2013, 29(1): 107-120.

[5] 刘清泉, 张智慧, 李永峰, 罗正传, 谢克家. 大别山北麓斑岩型钼矿床地质特征、成矿时代及其成矿构造背景[J]. 地质与勘探, 2014, 50(2): 199-215.

LIU Qing-quan, ZHANG Zhi-hui, LI Yong-feng, LUO Zheng-zhuan, XIE Ke-jia. Geologic features, mineralization epoch and tectonic setting of molybdenum deposits in the northern Dabie Mountain[J]. Geology and Prospecting, 2014, 50(2): 199-215.

[6] BALLARD J R, MICHAEL P, CAMLLELL H I. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: application to porphyry copper deposits of northern Chile[J]. Contrib Mineral Petrol, 2002, 144: 347-364.

[7] LIANG H Y, CAMPLELL H I, ALLEN C, SYN W D, LIU C Q, YU H X, XIE Y W, ZHANG Y Q. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J]. Mineralium Deposita, 2006, 41: 152-159.

[8] 辛洪波, 曲晓明. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束[J]. 矿物学报, 2013, 28(2): 152-160.

XIN Hong-bo, QU Xiao-ming. Relative ocidation states of ore-bearing porpherries inferred from Ce(Ⅳ)/Ce(Ⅲ) ratio in zircon: Application to the porphyry copper belt at Gangdese, Tibet[J]. Acta Mineralogica Sinica, 2013, 28(2): 152-160.

[9] 罗茂澄, 王立强, 冷秋锋, 陈 伟. 邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩锆石Hf 同位素和Ce4+/Ce3+比值[J]. 矿床地质, 2011, 30(2): 266-278.

LUO Mao-cheng, WANG Li-qiang, LENG Qiu-feng, CHEN Wei. Zircon Hf isotope and Ce4+/Ce3+ ratio of the monzogranite porphyry and biotite monzonitic granite in Bangpu Mo(Cu) deposit, Tibet. Mineral Deposits, 2011, 30(2): 266-278.

[10] 高 阳, 叶会寿, 李永峰, 罗正传, 李法岭, 熊必康, 孟 芳. 大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征[J]. 岩石学报, 2014, 30(1): 49-63.

GAO Yang, YE Hui-shou, LI Yong-feng, LUO Zheng-zhuan, XIONG Bi-kang, MENG Fang. SHRIMP zircon U-Pb ages, Hf isotopic compositions and trace elements characterristics of the granites from the Qian’echong Mo deposit, Dabie Orogen[J]. Acta Petrologica Sinica, 2014, 30(1): 49-63.

[11] 汤加富, 侯明金, 李怀坤, 吴跃东, 孙乘云. 扬子地块东北缘多期叠加变形及形成演化[J]. 大地构造与成矿学, 2003, 27(4): 313-326.

TANG Jia-fu, HOU Ming-jin, LI Huai-kun, WU Yue-dong, SUN Cheng-yun. Multi-superimposed deformations and their evolution in northeastern margin of Yangtze Block[J]. Geotectonica et Metallogenia, 2003, 27(4): 313-326.

[12] 王勇生, 朱 光, 王道轩, 刘国生, 宋传中. 大别山东缘郯庐两期走滑剪切带形成的温压条件与造山带折返的关系[J]. 大地构造与成矿学, 2004, 28(3): 228-238.

WANG Yong-sheng, ZHU Guang, WANG Dao-xuan, LIU Guo-sheng, SONG Chuan-zhong.Relation between P-T conditions of two phases of Tanlu strike-slip shear zones and delamination of the orogenic belts on the eastern margin of the Dabie Mountains[J]. Geotectonica et Metallogenia, 2004, 28(3): 228-238.

[13] 徐树桐, 江来利, 刘贻灿, 张 勇. 大别山区(安徽部分)的构造格局和演化过程[J]. 地质学报, 1992, 66(1): 1-14.

XU Shu-tong, JIANG Lai-li, LIU Yi-can, ZHANG Yong. Tectonic framework and evolution of the Dabie Mountains in Anhui, Eastern China[J]. Acta Geologica Sinica, 1992, 66(1): 1-14.

[14] 杨巍然, 杨坤光, 刘忠明, 简 平. 桐柏-大别造山带加里东期构造热事件及其意义[J]. 地学前缘, 1999, 6(4): 247-253.

YANG Wei-ran, YANG Kun-guang, LIU Zhong-ming, JIAN Ping. Caledonian tectono-thermal event in Tongbai-Dabie orogenic belt and its significance[J]. Earth Science Frontiers, 1999, 6(4): 247-253.

[15] 翟明国. 华北克拉通破坏前的状态: 对讨论华北克拉通破坏问题的一个建议[J]. 大地构造与成矿学, 2008, 32(4): 516-520.

ZHAI Ming-guo. State of lithosphere beneath the North China Craton before the Mesozoic lithospheric disruption: A suggestion[J]. Geotectonica ET Metallogenia, 2008, 32(4): 516-520.

[16] 高 山, 张本仁, 金振民. 秦岭-大别造山带下地壳拆沉作用[J]. 中国科学(D辑), 1999, 29(6): 532-541.

GAO Shan, ZHANG Ben-ren, JIN Zhen-min. The lower crustal delamination in Qinling-Dabie orogeny[J]. Science in China (Series D), 1999, 29(6): 532-541.

[17] 王清晨, 丛柏林. 大别山超高压变质带的大地构造框架[J]. 岩石学报, 1998, 14(4): 481-492.

WANG Qing-chen, CONG Bo-lin. Tectonic framework of the ultrahigh-pressure metamorphic zone from the Dabie Mountains[J]. Acta Petrologica Sinica, 1998, 14(4): 481-492.

[18] 李俊平, 李永峰, 罗正传, 谢克家. 大别山北麓钼矿找矿重大进展及其矿床地质特征研究[J]. 大地构造与成矿学, 2011, 35(4): 576-586.

LI Jun-ping, LI Yong-feng, LUO Zheng-zhuan, XIE Ke-jia. Geological features of molybdenum deposits and ore prospecting in northern slope of the Dabie Mountain, China[J]. Geotectonica ET Metallogenia, 2011, 5(4): 576-586.

[19] 刘清泉, 柳玉虎, 李永峰, 罗正传, 谢克家. 大别山北麓斑岩型钼矿床成矿地质条件及矿床成因[J]. 地质找矿论丛, 2013, 28(1) : 27-33.

LIU Qing-quan, LIU Yu-hu, LI Yong-feng, LUO Zheng-zhuan, XIE Ke-jia. Metallogenic Conditions and Genesis of Porphyry-Type Molybdenum Deposit in the northern Piedmont of Dabieshan Mountain[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(1): 27-33.

[20] JACKSON S E, PEARSON N J, GRIFFINn W L. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69.

[21] LIU Y S, GAO S, HU Z C. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J Petrology, 2010, 51(1): 537-571.

[22] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-285.

ZHAO Zheng-hua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers, 2010, 17(1): 267-285.

[23] BURNHAM A D, BERRY A J. An experimental study of trace element partitioning between ziron and melt as a function of oxygen fugacity[J]. Geochimica et Cosmochimica Acta, 2012, 95: 196-212.

[24] TROTZSCH U, ELLIS D J. The ZrO2-TiO2 phase diagram J]. Journal of Materials Science, 2005, 40: 4571-4577.

[25] TROTZSCH U, ELLIS D J. High P T study of solid solutions in the system ZrO2-TiO2: The stability of strilankite[J]. European Journal of Mineralogy, 2004, 16: 577-584.

[26] WATSON E B, HARRISON T M. Zircon thermometer reveals minimum melting conditions on earliest earth[J]. Science, 2005, 308: 841-844.

[27] WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151: 413-433.

[28] ZACK T, MORAES R, KRONZ A. Temperature dependence of Zr-in-rutile: Empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148: 471-488.

[29] CHAPPELL B W, WHITE A J R, WILLAMS I S. Low-and high-temperature granites[J]. Trans Roy Soc Edinburgh Earth Sci, 2004, 95: 125-140.

[30] FERRY J M, WATSON E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2007, 154: 429-437.

[31] TOMKINSH S, POWELLR, ELLIS D J. The pressure dependence of the zirconium-in-rutile thermometer[J]. Journal of Metamorphic Geology, 2007, 25(6): 703-713.

[32] 夏邦栋. 普通地质学[M]. 北京: 地质出版社, 1995: 1-82.

XIA Bang-dong. General geology[M]. Beijing: Geological Press, 1995: 1-82.

[33] AMES Leslie, TILTON George R, ZHOU Gao-zhi. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21: 339-342.

[34] 李锦轶. 中朝地块与扬子地块碰撞的时限与方式: 长江中下游地区震旦纪-侏罗纪沉积环境的演变[J]. 地质学报, 2001, 75(1): 25-34.

LI Jin-yi. Pattern and Time of the collision between the Sino Korean and Yangtze Blokes: Evolution of the Sinian-Jurassic sedimentary settings in the middle-lower reaches of the Yangtze River[J]. Acta Geologica Sinica, 2001, 75(1): 25-34.

[35] 张国伟, 张本仁, 袁学诚, 肖庆辉. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855.

ZHANG Guo-wei, ZHANG Ben-ren, YUAN Xue-chen, XIAO Qin-hui. Qinling orogenic belt and continental dynamics[M]. Beijing: Science Press, 2001: 1-855.

[36] LEECH M L. Arrested orogenic development: Eclogitization, delamination, and tectonic collapse[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 149-159.

[37] VANDERHAEGHEe O, TEYSSIER C. Partial melting and flow of orogens[J]. Tectonophysics, 2001, 342(3/4): 451-472.

[38] BRYANT D L, AYERS J C, GAO S. Geochemical, age, and isotopic constraints on the northern Dabie comples, east central Chian[J]. Geological Society of America Bulletin, 2004, 116(5/6): 698-717.

[39] HACKER B R, ATACHBACHER L, LIU J G. Subduction, collision and exhumation in the ultrahigh-pressure Qin-ling-Dabie orogen[C]// MALPAS J, FLETCHER C, ALI J R, ed. Aspects of the Tectonic Evolution of China. London: Geological Society, Special Publication, 2004, 226: 157-175.

[40] LIU X C, JAHN B M, LIU D Y. SHRIMP U-Pb dating on zircon of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications[J]. Tectonophysics, 2004, 394: 171-192.

[41] 毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示[J]. 中国科学(D辑), 2003, 33(4): 289-299.

MAO Jin-wen, ZHANG Zuo-heng, YU Jin-jie, WANG Yi-tian, NIU Bao-gui. The geodynamics setting of Mesozoic large-scale mineralization in North China: The revelation from accurate timing of metal deposits[J]. Science in China (Series D), 2003, 33(4): 289-299.

[42] 任继舜. 论中国大陆岩石圈构造的基本特征[J]. 中国区域地质, 1991(4): 289-293.

REN Ji-sun. The basic characteristics of the tectonic evolution of the continental lithosphere in China[J]. Regional Geology of China, 1991(4): 289-293.