中南大学学报(自然科学版)

DOI: 10.11817/j.issn.1672-7207.2015.04.030

深水浅层破裂压力计算方法

孙清华1,邓金根1,闫传梁1,蔚宝华1,刘书杰2,刘正礼3,肖坤1

(1. 中国石油大学(北京) 油气资源与探测国家重点实验室,北京,102249;

2. 中海石油研究总院,北京,100027;

3. 中海石油(中国)有限公司 深圳分公司,广东 深圳,518067)

摘 要:

层为均质、各向同性的理想弹塑性材料,将井眼周围的地层分为弹性区和塑性区两部分,地层屈服后服从Mohr-Coulomb强度准则,推导出深水浅层不排水时的塑性区半径和井周应力场的理论解答,引入土力学中的超孔隙压力理论,得出井眼钻开引起的超孔隙压力在井眼周围的分布规律,结合水力压裂理论分析了深水浅部地层的破裂机理并推导出破裂压力的理论公式。该理论的计算结果与工程实测结果接近,证明该理论的可靠性的。深水浅部地层未成岩,在分析深水浅部地层的地质力学问题时,应当考虑引入土力学中的相关理论进行分析。

关键词:

深水钻井理想弹塑性井周应力超孔隙压力破裂压力

中图分类号:TE21             文献标志码:A         文章编号:1672-7207(2015)04-1402-07

Calculation method for fracture pressure of deep sea shallow formation

SUN Qinghua1, DENG Jingen1, YAN Chuanliang1, YU Baohua1, LIU Shujie2, LIU Zhengli3, XIAO Kun1

(1. State Key Laboratory of Petroleum Resource & Prospecting,

China University of Petroleum, Beijing 102249, China;

2. Research Center, CNOOC, Beijing, 100027, China;

3. Shenzhen Branch, CNOOC(China) Co. Ltd., Shenzhen 518067, China)

Abstract: Assuming the shallow formation is a homogeneous, isotropic and ideally elastoplastic material, the formation around a borehole was divided into elastic zone and plastic zone. Formation in the plastic zone followed the Mohr-Coulomb criterion. The theoretical solution of the radius of plastic zone and stress distribution in two zones were derived in undrained condition. With the introduction of excess pore pressure theory in soil mechanics, the distribution rule of excess pore pressure around a borehole induced by drilling was obtained. Combined with hydraulic fracturing theory, the fracture mechanism of shallow formation in deep sea field was analyzed and the theoretical formula of fracture pressure was provided. The theoretical calculation results are quite close to the measured results of engineering practice, so the reliability of the theory is initially confirmed. As deep sea shallow formation is unconsolidated, the relevant theory of soil mechanics analysis should be taken into account when the geological mechanics problems of deep sea shallow formation are analyzed.

Key words: deep sea drilling; ideally elastoplastic; stress around borehole; excess pore pressure; fracture pressure

钻井过程中每年因井壁失稳造成的经济损失超过10亿美元[1],损失的时间占所有非钻进时间的40%[2],对于深水钻井,由于上覆岩层压力低,破裂压力低,发生井壁失稳的风险更大[3]。传统的破裂压力计算模型主要是建立在弹性力学基础上的[4-6],但在有些情况下地层在发生破裂前已经进入塑性屈服状态,Aadnoy等[7-8]考虑井眼周围的塑性带,建立了破裂压力计算的弹-塑性模型,但认为井筒起裂位置在弹-塑性交界面上,计算得出的破裂压力远高于弹性模型得出的结果,这与深水浅层破裂压力低的情况显然是不符的。对于深水钻井,研究者在进行破裂压力分析时大多仍采用传统的弹性模型或基于现场数据的经验模型[9-12],这对深部的硬地层或许是适用的,但深水浅部地层尚未固结成岩,受饱和土的固结理论控制,井壁在发生破裂前会进入塑性状态[13-15],现有模型无法揭示其破裂机理,虽然也有研究者对深水浅部地层的破裂压力进行了研究[13, 15-18],但得出的都是基于现场测试结果的经验或半经验模型,没有从井周地层的应力状态出发,不能解释深水浅部地层的破裂机理。本文作者引入土力学中的超孔隙压力理论[19],将井眼周围的地层分为弹、塑性两个区域,地层屈服之后服从Mohr-Coulomb强度准则,同时考虑因钻井液压力的挤土效应产生的超孔隙压力,假设当孔隙压力大于或等于原始地应力与钻井引起的应力增量之和时,地层将出现拉应力,如果拉应力超过地层的抗拉强度,井壁将产生开裂,此时的钻井液压力为破裂压力。

1  力学模型及基本假设

深水浅部地层沉积时间短,经历的构造运动少,且地层泊松比较大,使水平地应力间差值不大,可认为受均匀水平地应力作用[10, 13, 18]。假设深水浅层为均质、各向同性的理想弹塑性材料[13, 20-22],井眼钻开前地层为弹性状态,地层的屈服服从Mohr-Coulomb强度准则,在井眼钻开前,地层受上覆岩层压力σv和均匀水平地应力σh作用,井眼受力模型如图1所示。

在图1中,σh为作用在无限远处的均匀水平地应力;pp0为地层原始孔隙压力,pp为井眼钻开后孔隙压力;pw为钻井液液柱压力;rw为井眼半径;rp为地层弹-塑性交界面的半径,则在半径rp以内为塑性区,rp以外的地层仍然处于弹性状态。

根据Mohr-Coulomb强度准则,深水浅部地层的屈服函数可表示为

             (1)

图1  井眼力学模型

Fig. 1  Mechanical model of borehole

其中:;C和φ分别为地层的黏聚力和内摩擦角。本文采用总应力抗剪强度指标[23]

在钻井过程中,由于钻井液会在井壁上形成一层致密的泥饼,阻止井筒与地层间的流体渗流,可认为浅层土体不排水,土体的变形服从小变形理论。井眼钻开会导致井周地层应力的改变,由于土体不排水,部分应力会由地层中的孔隙压力承担,导致地层孔隙压力的改变。将由外载荷改变引起的孔隙压力改变量称为超孔隙压力,记作△p:

               (2)

2  深水浅层破裂压力计算

2.1  井眼垂向破裂时的破裂压力

2.1.1  井周应力场分布

轴对称条件下平面应变问题的应力平衡方程为

             (3)

式中:σr和σθ分别为径向应力和周向应力。

井眼周围弹性区地层的应力场为[24]

         (4)

式中:σrp为地层弹-塑性交界面上的径向应力;v为地层的泊松比;E为地层的弹性模量。

当井筒压力pw超过水平地应力σh时,井壁上的径向应力会大于周向应力,若差值过大,井壁会进入塑性状态,当塑性区应力满足σr>σz>σθ时,屈服函数为[25]

             (5)

利用式(3)、式(5)和边界条件可得塑性区应力场为

     (6)

由应力的连续性可知:塑-弹性交界面处的应力同时满足式(4)和式(6),可得塑性区半径为

    (7)

弹-塑性交界面上的应力为

         (8)

将式(7)和式(8)代入式(4)得弹性区最终应力解答为

   (9)

2.1.2  超孔隙压力的计算

饱和土体由固体颗粒构成的骨架及由水充满的孔隙组成,当受外力作用时,同样将由孔隙压力和有效应力共同平衡,由外载荷引起的孔隙压力增量称为“超孔隙压力”[19]。目前,土力学中关于超孔隙压力的求解主要是基于Skempton和Henkel的研究。Skempton[26]在土体常规三轴试验的基础上提出了超孔隙压力计算公式:

        (10)

式中:B为等向应力和偏应力共同作用下的孔隙压力系数,对于饱和土,B=1.0;A为偏应力作用下孔隙压力系数,可通过试验求解,也可根据经验取值(见表1);△σ1和△σ3分别为最大和最小主应力的增量。

表1  A的经验取值[27]

Table 1  Experience value of A[27]

Henkel[28]认为,三向应力作用下孔隙压力的改变由两部分组成:一部分是由平均法向应力引起的;另一部分是由平均剪应力引起的。他提出了下列计算公式:

          (11)

其中:

      (12)

 (13)

式中:α和β为Henkel孔隙压力系数,对于饱和土,取β=1。

对于常规三轴压缩试验,有,代入Henkel超孔隙压力公式[28]可得:

     (14)

与Skempton公式[26]对比,Henkel超孔隙压力公式可改写为

      (15)

根据塑性区应力计算式(6),由钻井引起的塑性区应力增量为

   (16)

由平面应变理论,井周塑性区的轴向应力增量可由下式表示[7, 29-30]

          (17)

根据式(16)和式(17)计算塑性区地层的平均法向应力变化量和平均剪切应力变化量,再代入式(15)可得由Henkel公式计算的塑性区超孔隙压 力为

  (18)

由弹性区应力分布式(9)可得弹性区应力增量,代入Henkel公式得弹性区超孔隙压力为

     (19)

2.1.3  破裂压力的计算

根据Terzaghi有效应力原理[25],塑性区有效应  力为

    (20)

弹性区有效应力为

 (21)

从式(21)和式(22)的有效应力分布可以看出:不管是在塑性区还是弹性区,周向和轴向有效应力随距井壁距离的增加都是递增的,有效应力的最小值出现在井壁上,因此,井眼破裂时裂缝首先应出现在井壁上,符合井筒破裂的一般规律[31]。井壁上的周向有效应 力为

 (22)

井壁破裂时满足

                (23)

井壁发生垂向破裂时的破裂压力为

     (24)

2.2  井眼水平破裂时的破裂压力

当井壁发生水平破裂时,井壁上的应力满足,此时屈服函数为

             (25)

由式(17)得井壁上的轴向应力为

      (26)

联立式(25)和式(26),结合井壁上可得

   (27)

            (28)

由Henkel公式得出的井壁超孔隙压力为

        (29)

井壁破裂时满足

         (30)

故井壁发生水平破裂时的破裂压力为

  (31)

由于井壁上一般不会同时出现多种形式的破裂,应当以引起两破裂形式的最小井筒压力作为地层的破裂压力pf,既

           (32)

3  实例分析

传统的破裂压力预测模型是建立在弹性力学基础上的,在均匀水平地应力下的破裂压力为[24]

           (33)

表2  破裂压力计算参数及结果

Table 2  Calculation parameters and results of fracture pressure

利用本文得出的计算模型对南海某深水气田浅部地层的破裂压力进行了分析,并与传统模型计算结果进行对比。计算参数及结果如表2所示,表2中的实测破裂压力为地漏试验(LOT)结果。从表2可以看出:根据本文提出的破裂压力计算模型,该气田三口井浅部地层都发生塑性状态下的垂向破裂,利用本文模型计算得出的破裂压力低于传统模型的计算结果,但与实测值更吻合,验证了本文模型的准确性,初步说明在分析深水浅部地层破裂机理时引入超孔隙压力理论是可行的。

为研究深水浅层发生破裂时的井周应力状态,利用表2中A井的地层参数对井周应力进行分析,该处地层开始进入塑性屈服状态时的井筒压力为27.8MPa,小于发生弹性破裂时的破裂压力,说明井壁在发生弹性破裂前已经进入塑性状态,也就是说弹性破裂是不可能发生的。计算时采用的弹性参数及井筒压力为:E=300 MPa,v=0.35,pw=28.7 MPa。在该计算参数下,rp/rw=1.24,计算结果如图2和图3所示。

图2所示为井周地层的总应力分布规律,从图2可以看出:在塑性区内,3个主应力的最大值都出现在井壁上;径向应力在塑性区和弹性区内都随距井壁距离的增加呈递减趋势;周向应力在塑性区内是递减的,但进入弹性区后是递增的,周向应力最小值出现在弹-塑性交界面上;轴向应力在塑性区内逐渐减小,进入弹性区后恒等于上覆岩层压力。

图3所示为井周地层的超孔隙压力及有效应力分布规律。有效应力分布规律与总应力分布规律相差较大。轴向和周向有效应力的最小值都出现在井壁上且随距井壁距离的增加呈递增趋势,这一点从式(20)和式(21)的有效应力计算公式也可以看出来,但在整个塑性区内轴向和周向有效应力变化不大,增加速率缓慢;径向有效应力随距井壁距离的增加呈递减趋势,但在塑性区内变化量极小,几乎为定值。造成总应力和有效应力变化规律迥异的主要原因是超孔隙压力的影响。由钻井引起的超孔隙压力随距井壁距离的增加而逐渐减小;在塑性区内超孔隙压力是由平均法向应力和平均剪应力变化共同引起的,在井壁上会形成非常大的超孔隙压力且随距井壁距离的增加迅速减小;进入弹性区以后,钻井引起的地层平均法向应力变化量为0,超孔隙压力只是由平均剪应力改变引起的。由于井壁上产生的超孔隙压力最大,造成了井壁上的周向有效应力最小且在井筒增压时最先变为拉应力,故地层破裂时裂缝首先出现在井壁上。

图2  深水浅层井周总应力分布

Fig. 2  Distribution of total stress around a borehole in deep sea shallow formation

图3  深水浅层井周有效应力及超孔隙压力分布

Fig. 3  Distribution of effective stress and excess pore pressure in deep sea shallow formation

4  结论

1) 深水浅部地层未固结,在地层破裂前井眼周围会出现一定面积的塑性区,在计算地层破裂压力时必须对井壁进入塑性状态后的应力分布规律进行分析。

2) 井眼钻开后,过高的钻井液压力会在井壁上产生挤土效应,导致井周地层孔隙压力的增加,产生超孔隙压力,超孔隙压力的最大值出现在井壁上,且随距井壁距离的增加而逐渐减小;深水浅部地层的破裂主要是由于超孔隙压力的产生使井壁上的有效应力变为拉应力造成的,利用水力压裂理论和超孔隙压力理论,得出了深水浅部地层的破裂压力理论公式。

3) 理论计算结果与实际工程中的实测结果比较接近,说明了本文理论结果的可靠性;将超孔隙压力理论引入井壁稳定性分析成功解释了深水浅部地层的破裂机理,在理论探索上取得了一定的进步。

4) 深水浅部地层未成岩,在分析深水浅部地层的地质力学问题时,应当考虑引入土力学中的相关理论进行分析。

参考文献:

[1] Mohammad E Z. Mechanical and physico-chemical aspects of wellbore stability during drilling operations[J]. Journal of Petroleum Science and Engineering, 2012, 82/83: 120-124.

[2] Zhang J C, Lang J, Standifird W. Stress, porosity, and failure-dependent compressional and shear velocity ratio and its application to wellbore stability[J]. Journal of Petroleum Science and Engineering, 2009, 69: 193-202.

[3] Willson S M, Edwards S, Heppard P D, et al. Wellbore stability challenges in the deep water, Gulf of Mexico: Case History Examples From the Pompano Field[C]//2003 SPE International. 2003: SPE 84266.

[4] Anderson R A, Ingram D S, Zanier A M. Determining Fracture Pressure Gradient from Well Logs[J]. JPT, 1973, 25(11): 1259-1268.

[5] 郭凯俊, 常培锋. 浅部地层破裂压力预测研究[J]. 岩石力学与工程学报, 2004, 23(14): 2484-2487.

GUO Kaijun, CHANG Peifeng. Study on prediction of fracturing pressure of shallow layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2484-2487.

[6] Huang J S, Griffiths D V, Wong S W. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(2): 59-67.

[7] Aadnoy B S, Belayneh M. Elasto-plastic fracturing model for wellbore stability using non-penetrating fluids[J]. Journal of Petroleum Science and Engineering, 2004, 45: 179-192.

[8] Aadnoy B S. Geomechanical analysis for deep-water drilling[C]//1998 SPE International. 1998: SPE 39339.

[9] Ritter D G, Grollimund B. Wellbore stability in the deepwater bijupira & salema fields, offshore brazil: A probabilistic approach[C]//2003 Offshore Technology Conference. 2003: OTC 15205.

[10] Rocha L A S, C J C, et al. Fracture pressure gradient in deepwater[C]//2004 SPE International. 2004: SPE 88011.

[11] Willson S M, Edwards S T, Crook A J, et al. Assuring stability in extended reach wells-analyses, practices and mitigations[C]//2007 SPE International. 2007: SPE 105405.

[12] Lang J, Li S l, Zhang J C, et al. Wellbore stability modeling and real-time surveillance for deepwater drilling to weak bedding planes and depleted reservoirs[C]//2011 SPE International. 2011: SPE/IADC 139708-MS.

[13] Wojtanowicz A K., Bourgoyne A T, Zhou, D, et al. Strength and fracture gradients for shallow marine sediments[R]. Alaska, US: Department of Interior Mineral Management Service, 2000: 31-39.

[14] Rocha L A S, Junqueira P, Roque J L. Overcoming deep and ultra deepwater drilling challenges[C]//2003 Offshore Technology Conference. 2003: OTC 15233.

[15] 蔚宝华, 闫传梁, 邓金根, 等. 深水钻井井壁稳定性评估技术及其应用[J]. 石油钻采工艺, 2011, 33(6): 1-4.

YU Baohua, YAN Chuanliang, DENG Jingen, et al. Evaluation and application of wellbore stability in deep water[J]. Drilling & Production Technology, 2011, 33(6): 1-4.

[16] E, Aadnoy B S. Fracture model for general offshore applications[C]//2006 SPE International. 2006: SPE 101178.

[17] E, Aadnoy B S. Improved prediction of shallow sediment fracturing for offshore applications[J]. SPE Drilling & Completion, 2008, 23(2): 88-92.

[18] 蔚宝华, 闫传梁, 邓金根, 等. 深水钻井安全钻井液密度窗口计算模型的建立与应用: 以西非AKPO深水油田为例[J]. 中国海上油气, 2012, 24(2): 58-60.

YU Baohua, YAN Chuanliang, DENG Jingen, et al. Study and application of calculation model of safe drilling fluid density window: A case study of AKPO oilfield, West Africa[J]. China Offshore Oil and Gas, 2012, 24(2): 58-60.

[19] 胡中雄. 土力学与环境土工学[M]. 上海: 同济大学出版社, 1997: 86-93.

HU Zhongxiong. Soil mechanics and environment soil engineering[M]. Shanghai: Tongji University Press, 1997: 86-93.

[20] Jeng D S, Seymour B R, Li J. A new approximation for pore pressure accumulation in marine sediment due to water waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(1): 53-69.

[21] Dugan B. Fluid flow in the Keathley Canyon 151 mini-basin, northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 919-923.

[22] Kwon T H, Song K I, Cho G C. Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: A numerical approach[J]. Energy & Fuels, 2010, 24(10): 5493-5507.

[23] 龚晓南. 软黏土地基土体抗剪强度若干问题[J].岩土工程学报, 2011, 33(10): 1596-1600.

GONG Xiaonan. Some problems concerning shear strength of soil in soft clay ground[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1596-1600.

[24] E, Holt R M, Horsrud P, et al. Petroleum related rock mechanics[M]. Oxford: Elsevier, 2008: 154-160.

[25] 龚晓南. 高等土力学[M]. 杭州: 浙江大学出版社, 1996: 262-267.

GONG Xiaonan. Advanced soil mechanics[M]. Hangzhou: Zhejiang University Press, 1996: 262-267.

[26] Skempton A W. The pore-pressure coefficients A and B[J]. Geotechnique, 1954, 4(4): 143-147.

[27] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1994: 267-269.

QIAN Jiahuan, YIN Zongze. Geotechnical principles and calculation[M]. 2nd ed. Beijing: China Water Resource and Hydropower Press, 1994: 267-269.

[28] Henkel D J. The shear strength of saturated remolded clays[C]//Research Conference on Shear Strength of Cohesive Soils. Colorado: ASCE, 1960: 533-554.

[29] 王仁, 黄文彬,黄筑平. 塑性力学引论[M]. 北京: 北京大学出版社, 1992: 168-182.

WANG Ren, HUANG Wenbin, HUANG Zhuping. Plastic mechanics Introduction[M]. Beijing: Beijing University Press, 1992: 168-182.

[30] 侯公羽, 牛晓松. 基于Levy-Mises本构关系及Hoek-Brown屈服准则的轴对称圆巷理想弹塑性解[J]. 岩石力学与工程学报, 2010, 29(4): 765-777.

HOU Gongyu, NIU Xiaosong. Perfect elastoplastic solution of axisymmetric cylindrical cavity based on Levy-Mises constitutive relation and Hoek-Brown failure criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 765-777.

[31] 陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008: 105-106.

CHEN Mian, JIN Yan, ZHANG Guangqing. Petroleum related rock mechanics[M]. Beijing: Science Press, 2008: 105-106.

(编辑  杨幼平)

收稿日期:2014-04-03;修回日期:2014-06-18

基金项目(Foundation item):国家自然科学基金创新研究群体项目(51221003);国家自然科学基金资助项目(51174219);国家科技重大专项(2011ZX05026-001-01)(Project (51221003) supported by the Program for Innovative Research Groups of the National Natural Science Foundation of China; Project (51174219) supported by the National Natural Science Foundation of China; Project (2011ZX05026-001-01) supported by the National Science and Technology Major Project of China)

通信作者:邓金根,博士,长江学者特聘教授,从事石油工程岩石力学及井壁稳定性方面研究;E-mail:dengjingen@126.com

摘要:假设深水浅部地层为均质、各向同性的理想弹塑性材料,将井眼周围的地层分为弹性区和塑性区两部分,地层屈服后服从Mohr-Coulomb强度准则,推导出深水浅层不排水时的塑性区半径和井周应力场的理论解答,引入土力学中的超孔隙压力理论,得出井眼钻开引起的超孔隙压力在井眼周围的分布规律,结合水力压裂理论分析了深水浅部地层的破裂机理并推导出破裂压力的理论公式。该理论的计算结果与工程实测结果接近,证明该理论的可靠性的。深水浅部地层未成岩,在分析深水浅部地层的地质力学问题时,应当考虑引入土力学中的相关理论进行分析。

[1] Mohammad E Z. Mechanical and physico-chemical aspects of wellbore stability during drilling operations[J]. Journal of Petroleum Science and Engineering, 2012, 82/83: 120-124.

[2] Zhang J C, Lang J, Standifird W. Stress, porosity, and failure-dependent compressional and shear velocity ratio and its application to wellbore stability[J]. Journal of Petroleum Science and Engineering, 2009, 69: 193-202.

[3] Willson S M, Edwards S, Heppard P D, et al. Wellbore stability challenges in the deep water, Gulf of Mexico: Case History Examples From the Pompano Field[C]//2003 SPE International. 2003: SPE 84266.

[4] Anderson R A, Ingram D S, Zanier A M. Determining Fracture Pressure Gradient from Well Logs[J]. JPT, 1973, 25(11): 1259-1268.

[5] 郭凯俊, 常培锋. 浅部地层破裂压力预测研究[J]. 岩石力学与工程学报, 2004, 23(14): 2484-2487.

[6] Huang J S, Griffiths D V, Wong S W. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(2): 59-67.

[7] Aadnoy B S, Belayneh M. Elasto-plastic fracturing model for wellbore stability using non-penetrating fluids[J]. Journal of Petroleum Science and Engineering, 2004, 45: 179-192.

[8] Aadnoy B S. Geomechanical analysis for deep-water drilling[C]//1998 SPE International. 1998: SPE 39339.

[9] Ritter D G, Grollimund B. Wellbore stability in the deepwater bijupira & salema fields, offshore brazil: A probabilistic approach[C]//2003 Offshore Technology Conference. 2003: OTC 15205.

C J C, et al. Fracture pressure gradient in deepwater[C]//2004 SPE International. 2004: SPE 88011." target="blank">[10] Rocha L A S, C J C, et al. Fracture pressure gradient in deepwater[C]//2004 SPE International. 2004: SPE 88011.

[11] Willson S M, Edwards S T, Crook A J, et al. Assuring stability in extended reach wells-analyses, practices and mitigations[C]//2007 SPE International. 2007: SPE 105405.

[12] Lang J, Li S l, Zhang J C, et al. Wellbore stability modeling and real-time surveillance for deepwater drilling to weak bedding planes and depleted reservoirs[C]//2011 SPE International. 2011: SPE/IADC 139708-MS.

[13] Wojtanowicz A K., Bourgoyne A T, Zhou, D, et al. Strength and fracture gradients for shallow marine sediments[R]. Alaska, US: Department of Interior Mineral Management Service, 2000: 31-39.

[14] Rocha L A S, Junqueira P, Roque J L. Overcoming deep and ultra deepwater drilling challenges[C]//2003 Offshore Technology Conference. 2003: OTC 15233.

[15] 蔚宝华, 闫传梁, 邓金根, 等. 深水钻井井壁稳定性评估技术及其应用[J]. 石油钻采工艺, 2011, 33(6): 1-4.

E, Aadnoy B S. Fracture model for general offshore applications[C]//2006 SPE International. 2006: SPE 101178." target="blank">[16] E, Aadnoy B S. Fracture model for general offshore applications[C]//2006 SPE International. 2006: SPE 101178.

E, Aadnoy B S. Improved prediction of shallow sediment fracturing for offshore applications[J]. SPE Drilling & Completion, 2008, 23(2): 88-92." target="blank">[17] E, Aadnoy B S. Improved prediction of shallow sediment fracturing for offshore applications[J]. SPE Drilling & Completion, 2008, 23(2): 88-92.

[18] 蔚宝华, 闫传梁, 邓金根, 等. 深水钻井安全钻井液密度窗口计算模型的建立与应用: 以西非AKPO深水油田为例[J]. 中国海上油气, 2012, 24(2): 58-60.

[19] 胡中雄. 土力学与环境土工学[M]. 上海: 同济大学出版社, 1997: 86-93.

[20] Jeng D S, Seymour B R, Li J. A new approximation for pore pressure accumulation in marine sediment due to water waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(1): 53-69.

[21] Dugan B. Fluid flow in the Keathley Canyon 151 mini-basin, northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 919-923.

[22] Kwon T H, Song K I, Cho G C. Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: A numerical approach[J]. Energy & Fuels, 2010, 24(10): 5493-5507.

[23] 龚晓南. 软黏土地基土体抗剪强度若干问题[J].岩土工程学报, 2011, 33(10): 1596-1600.

E, Holt R M, Horsrud P, et al. Petroleum related rock mechanics[M]. Oxford: Elsevier, 2008: 154-160." target="blank">[24] E, Holt R M, Horsrud P, et al. Petroleum related rock mechanics[M]. Oxford: Elsevier, 2008: 154-160.

[25] 龚晓南. 高等土力学[M]. 杭州: 浙江大学出版社, 1996: 262-267.

[26] Skempton A W. The pore-pressure coefficients A and B[J]. Geotechnique, 1954, 4(4): 143-147.

[27] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1994: 267-269.

[28] Henkel D J. The shear strength of saturated remolded clays[C]//Research Conference on Shear Strength of Cohesive Soils. Colorado: ASCE, 1960: 533-554.

[29] 王仁, 黄文彬,黄筑平. 塑性力学引论[M]. 北京: 北京大学出版社, 1992: 168-182.

[30] 侯公羽, 牛晓松. 基于Levy-Mises本构关系及Hoek-Brown屈服准则的轴对称圆巷理想弹塑性解[J]. 岩石力学与工程学报, 2010, 29(4): 765-777.

[31] 陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 北京: 科学出版社, 2008: 105-106.