简介概要

一种基于深度网络的视图重建方法

来源期刊:东北大学学报(自然科学版)2020年第8期

论文作者:张之敏 乔建忠 林树宽 王品贺

文章页码:1065 - 1069

关键词:视图重构;卷积神经网路;立体匹配;全卷积网络;加权局部对比归一化;

摘    要:为了解决在仅有单目视图的环境下实现立体匹配的问题,在现有视图重构网络模型Deep3D的基础上,提出了基于加权局部对比归一化约束的全卷积重构模型.该模型采用改进的全卷积神经网络架构作为模型的特征提取模块,以期减少训练参数,降低训练时间,增加模型的非线性.为了进一步提高重构精度,设计了新的基于加权局部对比归一化的约束条件,并采用结构相似性成本(SSIM)与L1成本相结合的损失优化函数对模型进行优化.在KITTI 2015数据集上展开实验,并与Deep3D模型及其后续的改进方法进行比较.实验结果表明,在只使用左视图作为训练数据的情况下,生成的右视图在SSIM和峰值信噪比两个指标上有很大提升,能够满足立体匹配方法中右视图的精度要求.

详情信息展示

一种基于深度网络的视图重建方法

张之敏,乔建忠,林树宽,王品贺

东北大学计算机科学与工程学院

摘 要:为了解决在仅有单目视图的环境下实现立体匹配的问题,在现有视图重构网络模型Deep3D的基础上,提出了基于加权局部对比归一化约束的全卷积重构模型.该模型采用改进的全卷积神经网络架构作为模型的特征提取模块,以期减少训练参数,降低训练时间,增加模型的非线性.为了进一步提高重构精度,设计了新的基于加权局部对比归一化的约束条件,并采用结构相似性成本(SSIM)与L1成本相结合的损失优化函数对模型进行优化.在KITTI 2015数据集上展开实验,并与Deep3D模型及其后续的改进方法进行比较.实验结果表明,在只使用左视图作为训练数据的情况下,生成的右视图在SSIM和峰值信噪比两个指标上有很大提升,能够满足立体匹配方法中右视图的精度要求.

关键词:视图重构;卷积神经网路;立体匹配;全卷积网络;加权局部对比归一化;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号